Наиболее простой динамический вариант модели Бертрана - две фирмы с постоянными и одинаковыми предельными издержками c, участвующие в ценовой конкуренции в течение (бесконечного) числа периодов времени. Каждая фирма максимизирует приведенную прибыль, те П = Е 5t-i ж nit, t=i где njt - прибыль фирмы i в период t, а 5 - дисконтирующий множитель. В этой динамической игре Бертрана стратегия фирмы j определяет цену pjt, которую взимает фирма в период t как функцию от всей лпредыстории ценовой конкуренции Ht-i = {piT ,p2T }T=1. Общий интерес представляют стратегии следующего вида {pM, если piT = pM для всех i, т, 1 ^ т ^ t - 1 c в противном случае где pM - монопольная цена. Согласно этой стратегии каждая фирма в период 1 назначает монопольную цену за свою продукцию. Затем, в каждый последующий период она назначает цену pM , если во все предыдущие периоды обе фирмы назначали цену pM , и цену, равную ее предельным издержкам, в противном случае. Заметим, что если обе фирмы, используют указанные стратегии, то в результате они взимают в каждый период монопольно высокие цены pM . Можно рассматривать назначение монопольной цены как неявное соглашение между оли- гополистами. В этих терминах каждая из фирм придерживается соглашения, если в предшествующие периоды обе фирмы не нарушали его, и нарушает соглашение, если другая фирма (или она сама) в прошлом нарушила соглашение. При некоторых предположениях о дисконтирующих множителях указанные стратегии составляют равновесие. Заметим, что этот результат верен только для бесконечной игры. В бесконечной игре единственным равновесием будет такой набор стратегий, согласно которому каждая фирма в каждом из периодов назначает цену на уровне предельных издержек. Таким образом, в конечной игре описанный Бертраном исход реализуется в каждом из периодов. Действительно, используя обратную индукцию, рассмотрим последний период. Поскольку выигрыши в нем не зависят от действий игроков в предыдущие периоды, то фактически соответствующая игра представляет собой обычную модель Бертрана. Продолжая эти рассуждения, мы получим равновесие Бертрана в каждом из периодов. Теорема 146: Пусть функция спроса является непрерывной и строго убывает Указанные выше стратегии составляют совершенное в подыграх равновесие рассматриваемой динамической модели Бертрана тогда и только тогда, когда 5 ^ 1/2. J
Доказательство: Докажем прежде всего, что указанные стратегии составляют равновесие Нэ- ша. Для этого нужно доказать, что ни одному из игроков не выгодно отклоняться от своей стратегии, если другой игрок придерживается своей стратегии. Если оба игрока будут придерживаться своих равновесных стратегий, то прибыль каждого из них за один период составит 2nM = 2Совокупная прибыль за все периоды будет в этом случае равна 1 1 nM j 2 t=T 2 1 - 5 Предположим, что один из игроков в первом периоде назначил цену отличную от монопольной: p(Если игрок в первом периоде назначит цену выше монопольной, то его общая прибыль будет равна нулю, поэтому ему не выгодно назначать такую цену.) Этот игрок в первом периоде получит весь спрос целиком и его прибыль составит (p - c)D(p). Во все последующие периоды его прибыль будет нулевая, поскольку другой игрок, придерживаясь своей стратегии, будет наказывать его за отклонение от соглашения: будет держать цену на уровне предельных издержек. Отклонение от стратегии в первом периоде будет выгодным, если 1 nM
^^^. При непрерывной кривой спроса игрок может сделать прибыль (p - c)D(p) сколь угодно близкой к монопольной прибыли nM = (pM - c)D(pM). Таким образом, чтобы рассматриваемый набор стратегий мог быть равновесным, требуется чтобы 11 1 < Ч 21Ч5 или 5 > 2 ж Мы доказали, что в первом периоде при 5 ^ 1/2 игроку нет смысла отклоняться от своей стратегии. Выгодно ли ему делать это в последующие периоды? Нет, поскольку ситуация будет той же - прибыли останутся теми же с точностью до возрастающего линейного преобразования (считая дисконтирование и прибыль в периоды до нарушения соглашения). Таким образом, доказано, что рассматриваемый набор стратегий является равновесием Нэша. Нам осталось доказать, что он будет равновесием Нэша в каждой подыгре. Для этого достаточно понять, что с точностью до возрастающего линейного преобразования выигрышей каждая подыгра повторяет исходную игру. ж Таким образом, доказано, что в рассмотренной бесконечной повторяющейся игре существует Парето-оптимальное (с точки зрения олигополистов) равновесие. Фактически же это равновесие не будет единственным. Можно придумать бесконечно много различных пар стратегий, составляющих совершенное в подыграх равновесие, и среди этих равновесий есть не Парето-оптимальные.
|
- Динамический вариант модели Бертрана (повторяющиеся взаимодействия)
динамический вариант модели Бертрана - две фирмы с постоянными и одинаковыми предельными издержками с, участвующие в ценовой конкуренции в течение (бесконечного) числа периодов времени. Каждая фирма максимизирует приведенную прибыль, н м где П,-4 - прибыль фирмы г в период t, а 5 - дисконтирующий множитель. В этой динамической игре Бертрана стратегия фирмы j определяет цену pjt, которую взимает
- Введение
динамического конкурентного взаимодействия. Скажем, в достаточно простом варианте это можно проиллюстрировать на следующем примере (см.: Kreps, 1990). Представим себе монополиста (в классическом смысле), производящего некоторый товар для продажи. Для простоты будем считать, что спрос определяется кривой х = 13 - р. Структура затрат монополиста также весьма проста: с(х) = 6.25 + х . Стандартная
- 7.2. Методологические подходы к задачам краткосредне- и долгосрочного прогнозирования мировых товарных рынков
динамический характер. Главной причиной отсутствия сколько-нибудь стабильного долговре менного равновесия на мировом товарном рынке является то, что раз розненные и в большинстве случаев независимые участники рынка, т.е. производители, потребители, продавцы и покупатели, принимают, как пра вило, самостоятельные и нескоординированные между ними решения, касающиеся реализации их собственной тактики
- СЛОВАРЬ-СПРАВОЧНИК
динамические (универсальные или детерминистические) и стохастические (вероятностные). Товар - экономический ресурс, предназначенный для продажи. Характеристиками товара выступают полезность, стоимость, ценность и цена. Товар Гиффена - малоценный товар, занимающий в бюджете потребителя значительное место и имеющий кривую спроса с положительным наклоном; для товара Гиффена эффект дохода от
- 1.1. Управление: основные понятия, система управления, ее признаки, принципы организации деятельности
динамического развитии государства и общества в целом. Проблема - это различие (мера, степень) между действительным состоянием осуществления функций (видов деятельности) государства (органа исполнительной власти) и желаемым состоянием или нормативно требуемым. Проблема может измеряться количественными и качественными отношениями в виде желаемого результата, что ее объединяет с целью и задачами.
- Словарь
динамический - динамическое прогнозирование финансовых операций на ряд ближайших периодов (недель, месяцев или кварталов). В конце каждого периода та часть бюджета, которая соответствует прошедшему периоду, удаляется, а новый раздел бюджета за аналогичный по продолжительности период добавляется. Бюджет закупок - план затрат и времени на определенный период, которые необходимы для обеспечения
- ТИПОЛОГИЯ ТРАНСАКЦИОННЫХ ИЗДЕРЖЕК
динамических издержек, связанных с обеспечением контрактов. Например, вы посадили за 100 км от Москвы картофель для собственного потребления, а не для продажи, но бомжи его выкапывают. Вы либо складываетесь с соседями и нанимаете человека с ружьем, заряженным солью, для охраны, либо вообще отказываетесь сажать картофель, либо теряете до 60 % урожая. И то, и другое, и третье есть конкретные либо
- 2. 3. Организация финансовой работы на предприятии
динамического равновесия, поэтому превышение критических значений отклонений грозит потерей контроля и значительными издержками регулирования. Особую роль в таких условиях имеет мониторинг ключевых параметров и оперативное воздействие на причины отклонений. Критерием эффективности может служить минимум отклонений от состояния равновесия при минимуме затрат на поддержание такого состояния.
- 4.1. Принципы и методы оценки эффективности предпринимательской деятельности
динамической качественной категорией). Для определения принципов и методов оценки эффективности предпринимательства рассмотрим взаимоотношения между двумя важнейшими экономическими категориями - эффектом и эффективностью. И эффект, и эффективность отражают рост и развитие экономического объекта, т. е. его способность к прогрессивным количественным изменениям, отраженным в объемных показателях, и
- 8.3. Глобальная модель международной торговли - проект ЛИНК
вариантов налоговой политики администра ции Дж. Картера для экономики США и ряда других стран. В частности, лпостлинковые результаты расчетов по последнему сценарию показали, что снижение налогов в США, передавшись по цепи межстрановых эконо мических взаимодействий, обнаруживает наибольшее воздействие на улуч шение платежного баланса Франции. Методическим каркасом проекта является матрица
|