Организация баз данных

Методическое пособие - Педагогика

Другие методички по предмету Педагогика

? других путей доступа, распределение хранимых значений данных, физическая кластеризация хранимых данных и т.п. Заметьте, что на стадиях 1 и 2 этим вопросам совсем не уделялось внимания

Для каждой низкоуровневой операции оптимизатор обладает набором низкоуровневых процедур реализации.

Замечание. С каждой процедурой также связана стоимостная формула, которая указывает "стоимость" выполнения процедуры (т.е. уровень требуемых затрат на ее выполнение). Обычно стоимость вычисляется в контексте операций ввода-вывода с диска, но некоторые системы учитывают также время использования процессора и другие факторы. Эти стоимостные формулы используются на стадии 4.

Следовательно, далее с помощью информации из каталога о состоянии базы данных (существующие индексы, кардинальные числа отношений и т.п.) и данных о зависимостях, описанных выше, оптимизатор выберет одну или несколько процедур-кандидатов для каждой низкоуровневой операции в запросе. Этот процесс обычно называют выбором пути доступа.

  1. Стадия 4. Генерация планов вычисления запроса и выбор плана с наименьшей стоимостью

На последней стадии процесса оптимизации конструируются потенциальные планы запросов, после чего следует выбор лучшего (т.е. наименее дорогого) плана выполнения запроса. Каждый план выполнения строится как комбинация набора процедур реализации, при этом каждой низкоуровневой операции в запросе соответствует одна процедура.

Для выбора плана с наименьшей стоимостью необходим метод привязки стоимости к данному плану. В основном стоимость плана это просто сумма стоимостей отдельных процедур, которые использованы для его выполнения. Таким образом, работа оптимизатора сводится к вычислению стоимостных формул для каждой такой процедуры. Проблема состоит в том, что стоимость выполнения процедуры зависит от размера отношения (или отношений), которое выбранная процедура обрабатывает.

 

  1. Преобразование выражений

 

  1. Выборки и проекции
  2. Последовательность выборок данного отношения может быть преобразована в одну (объединенную операцией AND) выборку этого отношения. Например, выражение

(A WHERE выборка_1) WHERE выборка_2

эквивалентно выражению

A WHERE выборка_1 AND выборка_2

  1. В последовательности проекций данного отношения можно игнорировать все проекции, кроме последней. Таким образом, выражение

(А [проекция_1])[проекция_2]

эквивалентно выражению

А [Проекция_2]

Конечно, чтобы первое выражение имело смысл, каждый атрибут, используемый в проекции_2, должен присутствовать и в проекции_1.

  1. Выборку проекции можно трансформировать в проекцию выборки. Например, выражение

(А [проекция]) WHERE выборка

эквивалентно выражению

(A WHERE выборка) [проекция]

Заметьте, что в основном всегда полезно выполнять операцию выборки перед операцией проекции, так как выборка приведет к уменьшению размера входных данных для операции проекции и, следовательно, к уменьшению количества данных, которые нужно сортировать для исключения дублирующихся записей в процессе вычисления проекции.

 

  1. Распределительный закон

Говорят, что унарный оператор распределяется по бинарной операции О, если для всех А и В выполняется условие

F (А О В) f (А) О f (В).

В реляционной алгебре операция выборки распределяется по операциям объединения, пересечения и вычитания. Операция выборки также распределяется по oneрации соединения, но только тогда, когда условие выборки состоит (в самом сложном случае) из объединенных операцией AND двух отдельных условий выборки по одному для каждого операнда операции соединения. Для рассматриваемого выше в этой главе примера сформулированное условие соблюдено (условие выборки очень простое и относится лишь к одному операнду), и можно использовать распределительный закон для замены рассматриваемого в примере выражения его более эффективным эквивалентом. Чистый эффект этого закона состоит в том, что можно выполнять "раннюю выборку". Выполнение ранней выборки почти всегда себя оправдывает, так как приводит к значительному уменьшению количества кортежей, которые нужно рассматривать в следующей операции. Кроме того, ранняя выборка может привести к уменьшению количества кортежей и на выходе следующей операции.

Далее приведено несколько более специфических примеров распределительного закона, на этот раз с операцией проекции. Во-первых, операция проекции распределяется по операциям объединения и пересечения (но не по операции вычитания). Во-вторых, эта операция также распределяется по операции соединения, но только в том случае, если в проекцию включены все атрибуты соединения. Точнее, выражение

(A JOIN В) [проекция]

эквивалентно выражению

(А [А_проекция]) JOIN (В [В_проекция])

тогда и только тогда, когда множество использованных в проекции атрибутов равняется объединению множеств атрибутов в А_проекции и В_проекции и включает атрибуты, по которым выполнено соединение. Этот закон можно использовать для выполнения ранних "проекций", которые обычно себя оправдывают по тем же причинам, что и операции выборки.

 

  1. Коммутативность и ассоциативность

Законы коммутативности и ассоциативности это еще два общих правила преобразования. Говорят, что бинарная операция О является коммутативной, если для всех А и В истинно равенство

А О В В О А

Например, в обычной арифметике операции умножения и сл