Оптоэлектронные и квантовые приборы и устройства. Энергетический расчет пирометра (фотометра)

Дипломная работа - Физика

Другие дипломы по предмету Физика

?тов.

Любое излучение тела, в том числе и оптическое, сопровождается потерей энергии. Для обеспечения непрерывности излучения необходимо пополнять убыль энергии. По виду восполнения энергии различают два вида излучения: тепловое и люминесценцию.

Тепловое излучение возникает тогда, когда энергия, уносимая излучением, пополняется сообщением телу соответствующего количества тепла. Тепловое излучение существует для всех тел, температура которых отлична от нуля (Т?0), но интенсивность и спектр излучения зависят от их температуры.

Для абсолютно черного тела светимость описывается законом Стефана-Больцмана: ?т=?Т4, где ?= 5,67•10-12 Вт/см2•К4. Для серых тел спектральная плотность светимости ЕТ=АТ•?Т, где коэффициент АТ<1. Длина волны, соответствующая максимуму интенсивности излучения абсолютно черного тела, определяется температурой излучающего тела в соответствии с законом смещения Вина - Т•?max = b = 2898 мкм•К. Если излучающий материал не соответствует абсолютно черному телу, то величина постоянной b имеет меньшее значение, зависящее от температуры. Для вольфрамовой нити в лампах накаливания - bw =2660 мкм•К.

Спектральная плотность светимости (Вт/см3) определяет распределение интенсивности излучения в зависимости от его спектрального состава. Для абсолютно черного тела в диапазоне от 0,5?max до 3?max сосредотачивается 90% всей мощности теплового излучения.

Полное описание свойств и характеристик теплового излучения основывается на использовании формулы Планка для спектральной плотности светимости абсолютно черного тела: E?T = 2?hc2?-5/(exp hc/?kT - 1), с учетом эмпирических параметров, учитывающих отклонение свойств используемых материалов от абсолютно черных тел.

Тепловое излучение широко используется в лампах накаливания, которые относительно редко используются в качестве источников излучения в оптоэлектронных устройствах. В то же время лампы накаливания являются до сих пор наиболее распространенными осветительными приборами. В вакуумной колбе источником теплового излучения является вольфрамовая нить, нагретая до температуры ~2450 К, ограниченной началом интенсивного испарения нити.

При этой температуре максимум интенсивности излучения соответствует инфракрасной области ?max = 1,1 мкм, т.е. лампы накаливания больше греют, чем светят. В связи с этим они имеют сравнительно низкую светоотдачу ?10 лм/Вт и КПД 1,6%. Более высокую эффективность имеют газонаполненные лампы накаливания, в которых стеклянные колбы наполнены инертным газом (N2, Ar2).

В них замедляется распыление нити, поэтому температура накала может быть повышена до 2700-2900 К, что обеспечивает уменьшение длины волны максимальной светимости и повышение светоотдачи до 20 лм/Вт и КПД до 3,5%.

К достоинствам ламп накаливания можно отнести низкую стоимость, высокую температурную и радиационную стойкость, высокую интегральную яркость ~ (1-10)•106 кд/м2 (для сравнения - яркость поверхности Солнца равна 1,5•1010 кд/м2). Недостатками ламп накаливания являются наличие вакуумной системы, широкий спектр излучения, значительная инерционность (10-2- 10-1 с), низкий КПД.

Более распространенным в оптоэлектронных источниках излучения является использование нетепловых источников излучения, использующих различные виды люминесценции.

Люминесценция - излучение, избыточное над тепловым и имеющее длительность значительно больше периода колебаний световой волны. Первая часть определения отделяет люминесценцию от теплового излучения, т.е. люминесценция является холодным свечением - энергия для излучения может подводиться любым нетепловым способом. В то же время необходимо учитывать, что любой вид люминесценции сопровождается и тепловым излучением тела, температура которого всегда отлична от нуля. Вторая часть определения позволяет отделить люминесценцию от процессов отражения света от поверхности и рассеяния излучения.

Люминесценция сопровождается передачей энергии телу нетепловыми способами, когда энергия частиц, в частности, электронов увеличивается, и этот избыток энергии расходуется на излучение фотонов. В веществе за счет энергии внешнего воздействия часть электронов с нижних равновесных уровней переходит на более высокие, затем возвращаются с испусканием фотонов, длина волны излучения определяется разностью энергий электронов - ?(мкм) = 1,23/(Е2-Е1) (эВ). Люминесценция подразделяется по способу подвода энергии на фотолюминесценцию, катодолюминесценцию, электролюминесценцию, радиолюминесценцию, хемилюминесценцию и др. В оптоэлектронике в источниках излучения используются в настоящее время в основном процессы электро-, катодо- и фотолюминесценции.

Явление электролюминесценции используется в твердотельных источниках излучения, где в качестве материалов применяются полупроводниковые вещества. В полупроводниках ширина запрещенной зоны, определяющей энергию перехода электронов, соответствует энергии квантов оптического диапазона. Соответственно, энергия возбужденных электронов должна совпадать по по рядку величины с энергией возбуждения и энергией излучаемых фотонов. Часто возбуждение электронов происходит в одном месте кристалла или во всем его объеме, а их квантовые переходы с излучением - в другом, поэтому в общем случае процессов люминесценции рассматриваются 3 основных процесса.

. Возбуждение внешним воздействием, перевод электронов в возбужденное состояние.

. Передача энергии центрам свечения, связанная с изменением пространственного и (или) энергетического ?/p>