Оптимизационные методы минимизации и максимизации

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

Введение

 

Оптимизация как раздел математики существует достаточно давно. Оптимизация - это выбор, т.е. то, чем постоянно приходится заниматься в повседневной жизни. Термином "оптимизация" в литературе обозначают процесс или последовательность операций, позволяющих получить уточненное решение. Хотя конечной целью оптимизации является отыскание наилучшего или "оптимального" решения, обычно приходится довольствоваться улучшением известных решений, а не доведением их до совершенства. Поэтому под оптимизацией понимают скорее стремление к совершенству, которое, возможно, и не будет достигнуто.

Необходимость принятия наилучших решений так же стара, как само человечество. Испокон веку люди, приступая к осуществлению своих мероприятий, раздумывали над их возможными последствиями и принимали решения, выбирая тем или другим образом зависящие от них параметры - способы организации мероприятий. Но до поры, до времени решения могли приниматься без специального математического анализа, просто на основе опыта и здравого смысла.

Вообще, чем сложнее организуемое мероприятие, чем больше вкладывается в него материальных средств, чем шире спектр его возможных последствий, тем менее допустимы так называемые "волевые" решения, не опирающиеся на научный расчет, и тем большее значение получает совокупность научных методов, позволяющих заранее оценить последствия каждого решения, заранее отбросить недопустимые варианты и рекомендовать те, которые представляются наиболее удачными.

Практика порождает все новые и новые задачи оптимизации причем их сложность растет. Требуются новые математические модели и методы, которые учитывают наличие многих критериев, проводят глобальный поиск оптимума. Другими словами, жизнь заставляет развивать математический аппарат оптимизации.

Реальные прикладные задачи оптимизации очень сложны. Современные методы оптимизации далеко не всегда справляются с решением реальных задач без помощи человека. Нет, пока такой теории, которая учла бы любые особенности функций, описывающих постановку задачи. Следует отдавать предпочтение таким методам, которыми проще управлять в процессе решения задачи.

Оптимизационные методы минимизации и максимизации приобретают всё большую ценность и востребованность.

Применение оптимизационных задач имеет особый успех при проектировании и анализе больших технических систем. Кроме того, интенсивное развитие средств вычислительной техники стимулирует ускорение темпов внедрения теоретических разработок в инженерную практику. В настоящее время для инженера знание методов оптимизации столь же необходимо, как знание основ математического анализа, физики, радиоэлектроники и других дисциплин.

.Нахождение стационарной точки

 

Целевая функция:

 

 

Для того, чтобы в точке функция f(x) имела безусловный локальный экстремум необходимо, чтобы все её частные производные обращались в точке в нуль.

Найдем для данной целевой функции частные производные по и :

 

 

Приравняв полученные выражения к нулю, получим систему уравнений:

 

 

Решение системы уравнений даёт результат:

 

Таким образом, экстремум целевой функции является точка с координатами х* =Т, значение целевой функции, в которой: .

Для определения характера стационарной точки составим определитель матрицы Гессе. Под определителем Гессе понимается определитель, составленный из вторых производных исходной целевой функции.

 

 

Так как гессиан функция - положительно определенная матрица (выполняются условия Сильвестра: все диагональные элементы матрицы Гесса - положительные величины, все ведущие главные определители положительные величины), стационарная точка является точкой минимума.

Рис 1. Линии уровня функции и стационарная точка

2.Нахождение безусловного экстремума методами прямого поиска

 

Задача безусловной оптимизации состоит в нахождении минимума или максимума функции в отсутствие каких-либо ограничений. Несмотря на то что большинство практических задач оптимизации содержит ограничения, изучение методов безусловной оптимизации важно с нескольких точек зрения. Многие алгоритмы решения задачи с ограничениями предполагают сведение ее к последовательности задач безусловной оптимизации. Другой класс методов основан на поиске подходящего направления и последующей минимизации вдоль этого направления. Обоснование методов безусловной оптимизации может быть естественным образом распространено на обоснование процедур решения задач с ограничениями.

 

2.1Метод поиска по симплексу

 

Описание алгоритма:

Суть метода заключается в исследовании целевой функции в вершинах некого "образца", построенного в пространстве вокруг "базовой" точки. Вершина, давшая наибольшее значение целевой функции отображается относительно двух других вершин и таким образом становится новой базовой точкой, вокруг которой строится новый образец и снова выполняется поиск. В случае двух переменных симплексом является равносторонний треугольник, в трёхмерном пространстве - тетраэдр.

Работа алгоритма начинается с построения регулярного симплекса в пространстве независимых переменных и оценивания значений целевой функции в каждой точке. Затем определяется вершина с максимальным значением целевой функции и