Одноосьовий гіроскопічний стабілізатор
Курсовой проект - Компьютеры, программирование
Другие курсовые по предмету Компьютеры, программирование
Міністерство освіти і науки України
Житомирський державний технологічний університет
Кафедра А і КТ
Група АТ-12
Курсовий проект
Предмет: Теорія автоматичного керування
Одноосьовий гіроскопічний стабілізатор
Виконав К.О. Гриценко
Перевірив С.С. Свістельник
Житомир 2007
Зміст
1 Завдання на курсовий проект
2 Опис роботи САК
3 Аналіз і синтез лінійної неперервної САК
3.1 Структурна схема САК
3.2 Визначення передаточної функції розімкнутої та замкнутої САК відносно вхідної
3.3 Визначення стійкості системи по критерію Гурвіца
3.4 Побудова амплітудно-фазової частотної характеристики (АФЧХ) та визначення стійкості САК за критерієм Найквіста. Дослідження
системи методом D розбиття
3.5 Побудова логарифмічної частотної характеристики САК та визначення запасів стійкості
3.6 Використовуючи логарифмічні частотні характеристики, виконання корекції САК в області середніх частот з метою отримання заданих
запасів стійкості по фазі та амплітуді
3.7 Схема корегуючого пристрою та розрахунок його елементів
3.8 Розрахунок та побудова графіку перехідної характеристики скорегованої САК
3.9 Для заданого типу вхідної дії розрахунок та побудова графіку усталеної помилки скорегованої САК
3.10 Оцінка якості скорегованої САК
3.11 Моделювання системи в програмному модулі Simulink
4 Аналіз дискретної САК (ДСАК)
4.1 Визначення періоду дискретизації імпульсного елемента
4.2 Визначення передаточної функції розімкнутої та замкнутої ДСАК відносно вхідної дії
4.3 Визначення стійкості отриманої системи по критерію Гурвіца
4.4 Побудова логарифмічної псевдочастотної характеристики ДСАК та визначення запасів стійкості
4.5 Розрахунок та побудова графіку перехідної характеристики ДСАК
4.6 Для заданого типу вхідної дії розрахунок та побудова графіку усталеної помилки ДСАК
4.7 Оцінка якості ДСАК
Висновки по роботі
Список літератури
- Завдання на курсовий проект
Система керування описується наступними рівняннями:
Г гіроскоп:
, де
- кут прецесії;
М збурюючий момент ( дія, що впливає на ОК)
МD протидіючий зовнішньому впливу момент двигуна;
М різниця між моментом, що впливає на ОК та
протидіючим моментом, що створюється двигуном;
ДК датчик кута:, де
u напруга постійного струму, що повільно змінюється;
П підсилювач:, де
uD напруга постійного струму, що повільно змінюється;
Двигун та редуктор:
Примітка: При необхідності проводити корекцію системи шляхом введення послідовного корегувального пристрою у вигляді пасивного RC-фільтру.
2 Опис роботи САК
В сучасних умовах для забезпечення гнучкого і безперервного управління пересуванням, зосередженням, маневром військ, бойової і спеціальної техніки необхідна точна інформація про місцеположення рухомих обєктів. Рішення цієї задачі забезпечується широким застосуванням на рухомих обєктах засобів навігації. Для цього всі рухомі одиниці, що беруть участь в пересуванні, повинні бути оснащені системами навігації, здатними безперервно, надійно і точно визначати їх місцеположення на місцевості, в різних метеоумовах, в будь-який час доби і пору року. Найбільш повно в досягненні зазначених цілей зарекомендували себе зкомплексовані системи навігації (ЗСН). До складу ЗСН входять елементи автономних навігаційних систем (АНС) і радіонавігаційних систем (РНС), як наземного (НРНС), так і космічного базування, так званих супутникових радіонавігаційних систем (СНРС). Спільна обробка інформації, отриманої від різних незалежних СН, дозволяє підвищити точність визначення місцеположення окремих наземних обєктів, а відповідно і ефективність управління військами. Навігаційна інформація (НІ), отримана з СН, знаходить все більш широке застосування як у військовій, так і в цивільних сферах діяльності. Провідні фахівці України, країн членів НАТО і РФ розглядають навігаційне забезпеченн як один з важливих елементів бойового забезпечення військ і оперативного сервісного забезпечення цивільних користувачів, що управляють рухомими обєктами.
Інерціальні навігаційні системи (ІНС) на гіростабілізованих платформах здатні забезпечувати точні вимірювання навігаційних параметрів в будь-яких умовах, не випромінюючи при цьому, ніяких сигналів. Крім того, вони повністю захищені від шумів.
Однак, фахівці відмічають і недоліки ІНС. Це, передусім, досить висока вартість, складність настройки перед початком руху, необхідність частих зупинок на опорних пунктах з відомими координатами для проведення корекції. Точність ІНС значною мірою залежить від плавності ходу рухомого обєкта (агрегату) і від наявності опорних пунктів за маршрутом руху. Незважаючи на це, ІНС на гіростабілізованих платформах широко застосовуються на різних рухомих обєктах.
Так в США з 1981 р. прийнята в експлуатацію ІНС РАDS AN/USQ-70 фірми "Litton". За принципом дії вказана система є інерціальною і являє собою лічильник пройденого шляху. До її складу входять гіростабілізована платформа з двома механічними двохступеневими гіроскопами і трьома акселерометрами; БЦОМ з клавіатурою введення координат п