Общая микробиология
Контрольная работа - Биология
Другие контрольные работы по предмету Биология
ная транспозиция, два этапа процесса. Молекулярная модель Шапиро. Генетический контроль и молекулярный механизм нерепликативной транспозиции у сложных транспозонов Tn5, Tn9 и Tn10. Генетический контроль и механизмы транспозиции у фага Mu. Транспозосома.
Конъюгативные транспозоны грамположительных и грамотрицательных бактерий, их классификация. Генетический контроль и механизмы транспозиции. Биологическое значение.
Подвижные генетические элементы эукариот (дрожжи, растения, дрозофила, млекопитающие). Классификация эукариотических подвижных элементов. Элементы со структурой прокариотического типа. Ретротранспозоны типа I у дрожжей, растений и животных, их структура, генетический контроль и механизм транспозиции, классификация. Ретротранспозоны типа II: особенности строения, распространение, механизм транспозиции.
Генетические эффекты, вызываемые подвижными элементами у прокариот и эукариот: изменения экспрессии генов, генные мутации, хромосомные перестройки, гибридный дисгенезиз. Участие подвижных элементов в организации структуры хромосом. Роль в онтогенезе живых организмов и в эволюции генетического материала. Подвижные элементы как инструмент генетических исследований.
Незаконная рекомбинация. Круг явлений, относимых к незаконной рекомбинации. Негомологичная рекомбинация у бактерий, катализируемая ДНК-гиразой. Молекулярная модель (Икеда). Негомологичная рекомбинации с участием ДНК-зависимой протеинкиназы у позвоночных. Роль в репарации двунитевых разрывов, интеграции экзогенной ДНК в хромосомы и в перестройках иммуноглобулиновых последовательностей ДНК.
Запрограммированные рекомбинационные перестройки генетического материала в онтогенезе
Состыковка разобщенных частей генов с помощью сайт-специфической рекомбинации в процессе споруляции у Bacillus subtilis и при формировании гетероцист у нитчатых цианобактерий. Перестройка генетического материала при образовании макронуклеуса у ресничных инфузорий. Диминуция хроматина у ряда представителей беспозвоночных.
Сайт-специфическая рекомбинация у позвоночных, участвующая в перестройках иммуноглобулиновых последовательностей ДНК. Структура молекул иммуноглобулинов. Организация и структура последовательностей ДНК, участвующих в формировании генов, кодирующих иммуноглобулины. Роль продуктов генов RAG1 и RAG2. Механизм сайт-специфической рекомбинации при состыковке кодирующих сегментов генов иммуноглобулинов. Участие других генетических процесов в формировании генов иммуноглобулинов: гомологичная рекомбинация (эктопический митотический кроссинговер, эктопическая митотическая конверсия), незаконная рекомбинация, гипермутагенез, альтернативный сплайсинг. Приуроченность этих процессов к определенным стадиям дифференцировки B-лимфоцитов.
Трансформация - процесс поглощения клеткой организма свободной молекулы ДНК из среды и встраивания её в геном, что приводит к появлению у такой клетки новых для неё наследуемых признаков, характерных для организма-донора ДНК. Иногда под трансформацией понимают любые процессы горизонтального переноса генов, в том числе трансдукцию, конъюгацию и т. д.
Трансформация прокариот
В любой популяции лишь часть бактерий способна к поглощению из среды молекул ДНК. Состояние клеток, при котором это возможно, называют состоянием компетентности. Обычно максимальное число компетентных клеток наблюдается в конце фазы логарифмического роста.
В состоянии компетентности бактерии вырабатывают особый низкомолекулярный белок (фактор компетентности), активизирующий синтез аутолизина, эндонуклеазы I и ДНК-связывающего белка. Аутолизин частично разрушает клеточную стенку, что позволяет ДНК пройти через неё, а также снижает устойчивость бактерий к осмотическому шоку. В состоянии компетентности также снижается общая интенсивность метаболизма. Возможно искусственное приведение клеток в состояние компетентности. Для этого применяют среды с высоким содержанием ионов кальция, цезия, рубидия, электропорацию или заменяют клетки реципиента протопластами без клеточных стенок.
Эффективность трансформации определяется количеством колоний, выросших на чашке Петри после добавления к клеткам 1 мкг суперскрученной плазмидной ДНК и рассева клеток на питательную среду. Современные методы позволяют добиваться эффективности 106-109.
Поглощаемая ДНК должна быть двухнитевой (эффективность трансформации однонитевой ДНК на порядки ниже, однако несколько возрастает в кислой среде), её длина - не менее 450 пар оснований. Оптимальное pH для прохождения процесса - около 7. Для некоторых бактерий (Neisseria gonorrhoeae, Hemophilus) поглощаемая ДНК должна содержать определённые последовательности.
ДНК необратимо адсорбируются на ДНК-связывающем белке, после чего одна из нитей разрезается эндонуклеазой на фрагменты длиной 2-4 тыс. пар оснований и проникает в клетку, вторая полностью разрушается. В случае, если эти фрагменты имеют высокую степень гомологии с какими-либо участками бактериальной хромосомы, возможна замена этих участков на них. Поэтому эффективность трансформации зависит от эволюционного расстояния между донором и реципиентом. Общее время процесса не превышает нескольких минут. Впоследствии, при делении, в одну дочернюю клетку попадает ДНК, построенная на основе исходной нити ДНК, в другую - на основе нити с включённым чужеродным фрагментом (выщепление)
Трансформация эукариотических клеток с использованием синтетических полимерных