Общая и неорганическая химия

Методическое пособие - Химия

Другие методички по предмету Химия

этого металла), равна:

 

 

где Е0 электрическая постоянная, зависящая от выбора электрода сравнения, R газовая постоянная, равная 8,32 Дж/граджмоль, Т абсолютная температура, n степень окисления металла в данном соединении (в соответствии с теорией строения атома число электронов, которое теряет атом металла, превращаясь в ион), F число Фарадея, с молярная концентрация ионов металла в данном растворе.

Это уравнение выражает зависимость потенциала металла от концентрации его ионов в растворе и называется уравнением Нернста. При использовании концентрированных растворов сильных электролитов концентрация иона в растворе заменяется его активностью. При активности, равной единице, второе слагаемое правой части уравнения становится равным нулю, и тогда E = E0. Если электродом сравнения взят стандартный водородный электрод, то такой гальванический элемент дает возможность получить значение стандартного электродного потенциала для данного металла.

Электродный потенциал измеряется в вольтах и равен энергии (измеряемой в джоулях, Дж), отнесенной к количеству электричества (измеряемому в кулонах, Кл), т.е. 1 В = 1 Дж/Кл. Тогда потенциалу гальванического элемента можно придать следующий физический смысл: это мера энергии, вырабатываемой в ходе протекающих в системе химических реакций. В физике единица измерения электродвижущей силы (ЭДС) вольт представляет собой ту силу, которая позволяет заряду в 1 кулон совершить работу в 1 джоуль.

Целостное представление о химической системе невозможно создать без связи с жизнью, с практикой. Изучение электрохимических систем необходимо для понимания не только широко используемых процессов (в гальванических элементах, в аккумуляторах, при электролизе), но и других явлений окружающего мира, в частности широко распространенных процессов коррозии. Атмосферная коррозия, разрушительное действие которой знакомо всем, возникает при контакте двух разнородных металлов, образующих гальваническую пару в среде электролита. В такой паре более активный металл играет роль анода и окисляется. Поучительной является история одного состоятельного американца, пожелавшего, не считаясь с затратами, построить уникальную яхту. Ее днище обшили дорогим монтель-металлом (сплав 70% никеля, около 30% меди; 12% железа и марганца), а киль, форштевень и раму руля изготовили из стали. При спуске яхты на воду в ее подводной части образовалась гальваническая пара. Значительная разность электродных потенциалов у монтель-металла и стали заставляла гальванический элемент активно работать, в результате еще до завершения отделочных работ корпус яхты дал первую течь.

Электрохимические методы широко применяются в аналитической химии. Защита окружающей среды предполагает постоянный аналитический контроль (мониторинг) множества разных объектов: воды (поверхностные, морские, речные, озерные), воздух (в том числе аэрозоли, пыли, туманы, дымы), почвы и донные отложения, растения, сельскохозяйственная продукция, пищевые продукты, корма, ткани животных и человека. Вредные химические вещества распространены повсюду в окружающей среде. Основная задача аналитического контроля заключается в том, чтобы получить объективную информацию о содержании вредных компонентов в среде обитания.

Начало развития электрохимических методов анализа связывают с возникновением классического электрогравиметрического метода (около 1864 г., У.Гиббс). Открытие М.Фарадеем в 1834 г. законов электролиза позднее легло в основу метода кулонометрии (применение этого метода началось с 1930-х гг.). Настоящий перелом в развитии этих методов произошел после открытия в 1922 г. Я.Гейровским метода полярографии (электролиз с капающим ртутным электродом). Электрохимические методы анализа чаще других используют в аналитической химии окружающей среды: в анализе вод, атмосферы, почв и пищи.

Таким образом, знакомясь с электрохимическими системами, учащиеся могут увидеть практическую ценность химической науки. Кроме того, рассмотрение электрохимических систем подводит учащихся к выводу о единстве важнейших явлений окружающего мира (массы и энергии, электрических явлений и химических превращений). Можно ожидать положительных результатов в развитии естественно-научного мировоззрения учащихся, если благодаря творческому подходу педагога целостность представлений об электрохимических системах будет донесена до сознания учащихся.

Химические источники тока

Химические источники тока, устройства, вырабатывающие электрическую энергию за счёт прямого преобразования химической энергии окислительно-восстановительных реакций. Первые Х. и. т. созданы в 19 в. (Вольтов столб, 1800; элемент Даниела Якоби, 1836; Лекланше элемент, 1865, и др.). До 60-х гг. 19 в. Х. и. т. были единственными источниками электроэнергии для питания электрических приборов и для лабораторных исследований. Основу Х. и. т. составляют два электрода (один содержащий окислитель, другой восстановитель), контактирующие с электролитом. Между электродами устанавливается разность потенциалов электродвижущая сила (эдс), соответствующая свободной энергии окислительно-восстановительной реакции. Действие Х. и. т. основано на протекании при замкнутой внешней цепи пространственно разделённых процессов: на отрицательном электроде восстановитель окисляется, образующиеся свободные электроны переходят по внешней цепи (создавая разрядный ток) к положительному электроду, где участвуют в реакции восстановления окислит