Общая и неорганическая химия
Методическое пособие - Химия
Другие методички по предмету Химия
наковыми ненулевыми скоростями идут восстановление и окисление, так что суммарный ток через электрод равен нулю. Если ток не равен нулю, равновесие нарушается, и потенциал отклоняется от равновесного значения. Электродвижущая сила (эдс e) гальванического элемента измеряется в равновесных условиях и равна разности равновесных потенциалов: e = j1 - j2. Но для этого нужно, чтобы сопротивление вольтметра было бесконечно велико. Если оно невелико, то в цепи течет заметный ток, равновесие нарушается, и измеряемое напряжение U < e. Эдс - это работа А по перемещению единичного электрического заряда по всей цепи: А = e*q. Если реагирует моль вещества, и каждая молекула или ион отдает или принимает ne, то q = NAne = nF, где F = eNa = 96500 Кл - число Фарадея - заряд моля электронов. А = enF.
Электрод, на котором идет окисление, называется анодом, а где идет восстановление - катодом. В гальваническом элементе анод - источник электронов, то есть имеет отрицательный знак, катод - положительный, а при электролизе все наоборот.
ФАКТОРЫ, ВЛИЯЮЩИЕ НА ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ
1. Важнейший, конечно, это природа электрода и электролита (включая природу растворителя). Мы далее будем подробно разбирать окислительно-восстановительные свойства разных веществ, а пока - лишь некоторые соображения на простейшем примере равновесия металла с раствором его соли:
М(тв.) + m H2O(ж.) = [M(OH2)m]n+(ж.) + ne-(тв.).
На первый взгляд может показаться, что этот процесс аналогичен процессу ионизации атома: М(г.) = Мn+(г.) + ne-(г.). Энергия, необходимая для отрыва электрона от атома, называется потенциалом ионизации I (а тут - сумма n потенциалов ионизации). Чем ниже I и чем ниже j, тем легче металл отдает электроны, тем более сильным восстановителем он является. Но все же потенциал ионизации и электродный потенциал - это разные величины, они соответствуют разным процессам. В первом случае ион образуется из обособленного (газообразного) атома, а во втором - атомы связаны в твердое тело, и зачастую весьма прочно. Если бы железо или вольфрам состояли из несвязанных атомов, они бы не были такими твердыми и тугоплавкими! Для получения свободных атомов из твердого металла нужно затратить энергию атомизации. Чем она больше, тем менее активен металл. Ион тоже в первом случае - газообразный, во втором - сольватированный. При сольватации выделяется большая энергия, поэтому с увеличениемЅDсольв.НЅ восстановительные свойства усиливаются. Наконец, и электроны в первом случае газообразные, а во втором - связаны в металле, и их энергии отличаются на работу выхода электрона. Таким образом, электродные потенциалы металлов зависят не только от атомных свойств, но и от прочности связи атомов и электронов в простом веществе, от энергии сольватации. Если электрод инертный (не расходуется и не образуется, как Pt в водородном электроде), то его природа не влияет на равновесный потенциал, но влияет на скорость установления равновесия. Здесь электрод - катализатор. Поэтому часто вместо термина “электродный потенциал” употребляют “окислительно-восстановительный потенциал” или “редокс-потенциал”.
2. Концентрации или парциальные давления окисленной и восстановленной форм.
Качественно ясно по принципу Ле Шателье: чем выше концентрация окисленной формы и чем ниже концентрация восстановленной, тем сильнее эта система притягивает электроны, т.е. тем выше j. Количественную зависимость дает уравнение В. Нернста (без вывода):
j = j0 + (RT/nF) ln([Ox]/[Red]), где
R и T - газовая постоянная и абс. температура, n - число электронов, передаваемых в электродной реакции, [Ox] - концентрация (точнее, активность) или давление окисленной формы в степени, соответствующей коэффициенту в уравнении, причем здесь учитывается не только сам окислитель, но вообще все реагенты, стоящие в одной стороне уравнения с окислителем, а [Red] - то же для восстановленной формы, j0 - стандартный электродный потенциал. Как всегда, если вещество составляет отдельную твердую или жидкую фазу, его активность по определению равна единице и не пишется; если вещество растворено, то подставляется его молярная концентрация, а стандартным состоянием является 1 М раствор; если вещество плохорастворимое, то стандартное состояние - его насыщенный раствор, то есть опять-таки равновесие с отдельной фазой растворяемого вещества, а если вещество в газовой фазе, то ставится его парциальное давление в атмосферах, а стандартное состояние - 1 атм. Если все реагенты и продукты - в стандартных состояниях, то под логарифмом 1, второе слагаемое =0, и j = j0. Если подставить коэффициент перехода от натуральных к десятичным логарифмам, числовые значения R и F и принять Т = 298 К, то
j = j0 + (0,0591В/n)lg([Ox]/[Red]).
Примеры.
j(Zn2+/Zn) = j0 + (0,0591B/2)lg[Zn2+] - без знаменателя; j(H+/H2) = j0 + (0,0591B/2)lg[H+]2/p(H2).
Для реакции MnO4- +8H+ +5e = Mn2+ + 4H2O j = j0 + (0,0591B/5)lg([MnO4-][H+]8/[Mn2+]). Заметьте, что число электронов здесь подсчитано по закону сохранения заряда (без них суммарный заряд ионов слева +7, справа +2) и не требует представления о том, что в перманганате степень окисления марганца 7. Степень окисления - условное понятие, а 5е в этой реакции определяются объективно.
3. Температура. В уравнении Нернста она влияет в двух местах: ведь и стандартный потенциал сам может зависеть от температуры, поэтому однозначно предсказать вид зависимости сложно, но она, безусловно, есть. В справочниках чаще всего приводят стандартные потенциалы при 298 К.
4. Зависит ли j от способа записи уравнения электродной реакции? Мы знаем, что, если умножи