Анализ данных в линейной регрессионной модели
Контрольная работа - Экономика
Другие контрольные работы по предмету Экономика
на статистически значима.
Задание №8
Для данных, сгруппированных только по , проверить адекватность линейной регрессии на (уровень значимости ).
Для проверки адекватности воспользуемся корреляционной таблицей. Будем считать, что середины интервалов группировки , , являются значениями компоненты . Тогда число повторных наблюдений равно 4. Запишем результаты этих наблюдений в виде таблицы
Таблица 1.2
2,55,58,511,5
11,94
12,34
14,68
9,87
11,52
9,71
14,61
9,66
11,19
8,54
10,73
10,13
5,389,19
8,09
16,35
7,70
7,41
10,51
9,97
9,87
4,39
6,48
7,77
4,76
3,72
14,32
10,64
5,79
9,13
10,33
7,15
5,64
4,52
4,52
3,57
3,14
4,05
2,22
3,57
4,95
-2,23
4,52
2,06
3,11
2,88
4,58
6,78
2,15
3,87131712810,798,599,653,74
Для удобства расчетов в последней строке таблицы приведены средние значения , .
.
Получим уравнение выборочной линейной регрессии на для данных, сгруппированных по :
;
, , , , ;
y(x) = 8,29 0,9x.
;
.
Выборочное значение статистики равно
.
Так как квантиль распределения Фишера, вычисленный с помощью Matlab, равен
3,19,
то , а значит, линейная регрессия на для данных, сгруппированных по , адекватна результатам наблюдений.
Задание 9. Для негруппированных данных проверить гипотезу : при альтернативной гипотезе : (уровень значимости )
Имеются следующие величины: , , , , .
Сначала проверяется гипотеза :, альтернативная гипотеза :.
Статистика равна
= 1,931
С помощью средств Matlab, найдем:
F0,975 (n-1; n-1)=F0,975 (49,49) = 1.7622
z > F0,975 (n-1; n-1),
следовательно отклоняется, а значит что
Теперь можно проверить гипотезу, :, при альтернативной гипотезе :.
Т.к. , статистика имеет вид
= 1,418
Найдем количество степеней свободы
?3,625
С помощью средств Matlab, найдем:
z < , значит нет оснований отклонять гипотезу :.
Приложение
A = [ 4.19 3.04 4.60 9.83 8.66 1.30 4.22 5.11 9.85 8.80 12.17 11.25 5.73 4.05 5.41 1.28 1.67 11.99 7.66 5.17 3.26 12.58 8.34 5.79 3.42 4.44 11.31 7.57 1.62 5.71 11.06 10.35 2.46 1.02 5.77 8.63 6.91 3.56 9.47 6.16 8.26 6.70 4.95 3.37 1.53 9.54 3.11 5.09 11.08 8.74;
9.19 11.94 8.09 10.33 7.15 12.34 16.35 7.70 5.64 4.52 4.52 2.06 7.41 10.51 9.97 14.68 9.67 3.31 5.93 9.87 11.52 2.88 3.57 4.39 9.71 9.13 4.58 3.14 14.61 6.48 6.78 2.15 9.66 11.19 7.77 4.05 4.76 8.54 2.22 3.72 3.57 14.32 10.64 10.73 10.13 4.95 5.38 5.79 3.87 -2.23]
x = A(1,:);
y = A(2,:);
Mx = mean(x)
Dx = var(x,1)
My = mean(y)
Dy = var(y,1)
plot(x,y,g*)
grid on
hold on
axis([1 13 -3 18]);
gca1 = gca;
set(gca1,xtick,[1 4 7 10 13],ytick,[-3 0 3 6 9 12 15 18]);
xlabel(X);
ylabel(Y);
z = 12.77 - 0.848*x; %построение регрессии Y на x
Zplot = plot(z,x);
set(Zplot,Color,Red,LineWidth,[2])
hold on
text(12, -1,x(y));
text(11.8, 2,y(x));
t = 10.86 - 0.6*y; %построение регрессии X на y
Tplot = plot(t,y);
set(Tplot,Color,Red,LineWidth,[2])
hp = line([1 6.36],[7.38 7.38]); %эти прямые показывают положение
set(hp,Color,blue,LineWidth,[1.5]) %среднего выборочного
hp = line([6.36 6.36],[-3 7.38]);
set(hp,Color,blue,LineWidth,[1.5])
K = cov(x,y) %находим ковариацию
DEtK = det(K)
M = corrcoef(x,y) %коэффициент корреляции
detM = det(M)