Нейро-нечёткие сети
Контрольная работа - Компьютеры, программирование
Другие контрольные работы по предмету Компьютеры, программирование
?.
. При обучении нейронных сетей могут возникать ловушки, связанные с попаданием в локальные минимумы. Детерминированный алгоритм обучения не в силах обнаружить глобальный экстремум или покинуть локальный минимум. Одним из приемов, который позволяет обходить ловушки, является расширение размерности пространства весов за счет увеличения числа нейронов скрытых слоев. Некоторые возможности для решения этой проблемы открывают стохастические методы обучения. При модификации весов сети только на основе информации о направлении вектора градиента целевой функции в пространстве весов можно достичь локального минимума, но невозможно выйти из него, поскольку в точке экстремума движущая сила (градиент) обращается в нуль и причина движения исчезает. Чтобы покинуть локальный экстремум и перейти к поиску глобального экстремума, нужно создать дополнительную силу, которая будет зависеть не от градиента целевой функции, а от каких-то других факторов. Один из простейших методов состоит в том, чтобы просто создать случайную силу и добавить ее к детерминистической.
. Сигмоидальный характер передаточной функции нейрона является причиной того, что если в процессе обучения несколько весовых коэффициентов стало слишком большим, то нейрон попадает на горизонтальный участок функции в область насыщения. При этом изменения других весов, даже достаточно большие, практически не сказывается на величине выходного сигнала такого нейрона, а значит и на величине целевой функции.
. Неудачный выбор диапазона входных переменных - достаточно элементарная, но часто совершаемая ошибка. Если - это двоичная переменная со значением 0 и 1, то примерно в половине случаев она будет иметь нулевое значение: = 0. Поскольку входит в выражение для модификации веса в виде сомножителя, то эффект будет тот же, что и при насыщении: модификация соответствующих весов будет блокирована. Правильный диапазон для входных переменных должен быть симметричным, например от +1 до -1.
. Процесс решения задач нейронной сетью является непрозрачным для пользователя, что может вызывать с его стороны недоверие к прогнозирующим способностям сети.
. Предсказывающая способность сети существенно снижается, если поступающие на вход факты (данные) имеют значительные отличия от примеров, на которых обучалась сеть. Этот недостаток ярко проявляется при решении задач экономического прогнозирования, в частности при определении тенденций котировок ценных бумаг и стоимости валют на фондовых и финансовых рынках.
. Отсутствуют теоретически обоснованные правила конструирования и эффективного обучения нейронных сетей. Этот недостаток приводит, в частности, к потере нейронными сетями способности обобщать данные предметной области в состояниях переобучения (перетренировки).
Список литературы
1.Андрейчиков А.В., Андрейчикова О.Н. Интеллектуальные информационные систем: Учебник. - М.; Финансы и статистика, 2004. - 424 с.: ил.
2.Девятков В.В. Системы искусственного интеллекта: Учеб. Пособие для вузов. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. - 352 с.: ил.
.Бухарбаева Л.Я., Танюкевич М.В. Информационная поддержка финансового менеджмента на основе программного пакета нейросетевого программирования Brainmaker 3.11: Методические указания. / Уфимск. гос. авиац. техн. унив-т. - Уфа, 2001. - 46 с.
.Черняховская Л.Р., Шкундина Р.А. Нейро-нечёткое моделирование: Методические указания. / Уфимск. гос. авиац. техн. унив-т. - Уфа, 2004. - 22 c.
.Балдин К.В., Уткин В.Б. Информационные системы в экономике: Учебник. - М.; Финансы и статистика, 2009.
.Романов В.П. Интеллектуальные информационные систем в экономике: Учебник. - М.; Финансы и статистика, 2007.
.Соколов Е.Н., Вайтнявичус Г.Г. Нейроинтеллект: от нейрона к нейрокомпьютеру. - М.: Наука, 1989.
.Осовский С. Нейронные сети для обработки информации: Учебник. - М.; Финансы и статистика, 2002.
.Мкртчян C. О. Нейроны и нейронные сети (Введение в теорию формальных нейронов и нейронных сетей). - М.: Энергия, 1971.
.Позин Н.В. Моделирование нейронных структур. - М.: Наука, 1970.