Аморфні метали
Курсовой проект - Физика
Другие курсовые по предмету Физика
агнетиках завжди є магнітна анізотропія,обумовлена кристалічним порядком розташування магнітних моментів атомів. Магнітна анізотропія істотно зменшує рухливість доменних стінок і збільшує коерцитивне поле. В принципі в аморфних феромагнетиках магнітна анізотропія повинна дорівнювати нулю, оскільки відсутній кристалічний дальній порядок. Практично реальні аморфні ферромагнетики все ж володіють магнітною анізотропією, яка, однак, на два порядки менше, ніж у кристалічних. Зменшення магнітної анізотропії призводить до різкого зниження коерцитивного поля до значень 0,01 А / м, що зменшує втрати при перемагнічуванні. Таким чином, аморфні металеві сплави майже завжди є магнітом якими феромагнетиками.
Іншою корисною властивістю аморфних феромагнетиків є більш високе значення початкової магнітної проникності як на низьких (0,1-1 МГц), так і на високих (5-15 МГц) частотах. Ця властивість визначається високим питомим електричним опором аморфних феромагнетиків, що значно знижує втрати на труми Фуко.
Завершуючи опис магнітних властивостей аморфних феромагнетиків, ми приходимо до висновку, що властиві їм магнітні властивості виникають завдяки невпорядкованому розташуванню атомів. Деякі з цих властивостей є унікальними і не можуть бути отримані в кристалічних сплавах.
4.2. Використання аморфних сплавів у якості дифузійного барєру та для виготовлення магнітних голівок і сенсорів
Прагнення до мініатюризації електронних пристроїв привело до того, що лінійні розміри струмоведучих доріжок, контактних майданчиків і інших елементів сучасних інтегральних схем не перевищують 0,5-1 мкм. При субмікронних розмірах робочих елементів створюються умови для взаємного проникнення атомів - дифузії на межі розділу метал-напівпровідник. Цей процес з часом призводить до замикання струмоведучих доріжок та виходу приладу з ладу. Щоб запобігти дифузії, необхідно створити тонкий барєрний шар між напівпровідником і металом.
Близько десяти років тому було показано, що найкращими барєрними властивостями володіють аморфні металеві сплави [8]. Дифузія через аморфні шари сильно ускладнена внаслідок нерегулярності атомної структури. Особливо хорошими барєрними властивостями володіють аморфні сплави тугоплавких металів, наприклад Re-Ta, e-Nb.
Як відомо, для запису і зберігання інформації використовуються феромагнітні матеріали. У результаті досліджень, спрямованих на підвищення інформаційної щільності, вже отримані матеріали, щільність запису на яких досягає 108 біт/см2. При цьому розмір області, що зберігає один біт, не перевищує 1 мкм2. Такі носії роблять з магнітожорстких матеріалів, що володіють великим коерцитивним полем. При цьому магнітна голівка, яка використовується для запису інформації, що має бути з матеріалу, що має високе значення намагніченості насичення Ms. До того ж при зчитуванні інформації важливо, щоб матеріал сердечника головки мав високу початкову магнітну проникність.
Усім цим вимогам задовольняють аморфні феромагнітні сплави. Використовуючи напилення, можна виготовити голівку, яка має високу намагніченість насичення Ms = 1,2-1,5 Тл, будь-яких мислимих розмірів, здатну перемагнічувати мікроскопічні області носія (близько 0,1 мкм). Аморфні головки відносно дешеві, мають високу зносостійкість (час роботи близько 10 000 годин), характеризуються високими значеннями початкової магнітної проникності на частотах 5-15 МГц.
Аморфні шари, отримані за допомогою іонно-плазмового напилювання, можна використовувати для створення високочутливих датчиків, сенсорних пристроїв і малогабаритних трансформаторів. Нові сенсорні пристрої можна використовувати в технологічних процесах виробництва автомобілів, індустріальних роботів, у промислових вимірниках різного роду властивостей (датчики розмірів, сили удару, швидкості газових потоків, обму витікаючої рідини і т.д.). Сенсорні пристрої, виготовлені на основі аморфних сплавів, можуть працювати в самих складних умовах завдяки високим характеристикам пружності, ізотропності, електромагнітних та інших властивостей.[9]
4.3. Ноу-хау галузі металевих стекол. Гнучке скло. REAL - скло
Гнучке скло. Винахід скла, яке може гнутися, вже само по собі здається чимось незвичайним. А ось гнеться скло, яке зробили фахівці з інституту фізики Китайської академії наук (Institute of Physics) під керівництвом професора Вей Хуа Вана (Wei Hua Wang), до того ж являє собою металевий сплав. Розробкою надтонких металевих стекол дослідники займаються вже давно. Значний прорив в цій галузі був зроблений близько 10 років тому, коли вчені навчилися вирощувати такі матеріали у вигляді тонких пластин. Галузь застосування цих розробок виявилася дуже широкою. Втім, у гнучких стекол є істотний недолік - висока крихкість.Раніше для поліпшення механічних характеристик вчені додавали спеціальні наночастинки до складу таких стекол. Тріщина, утворюватися в таких матеріалах, розповсюджувалася до точки "зустрічі" з наночастинок, на якій і зупинялася.Докладні матеріали виявлялися досить дорогими, тому професор Ван і його колеги вирішили зайнятися пошуком простішого рішення.
В результаті серії експериментів вони змогли зробити скло зі сплаву, створеного з цирконію, алюмінію, міді і нікелю.
Особливість отриманого матеріалу в тому, що в його структурі розподілені зони, що складаються з твердих і щільних областей, оточених мякими і менш щільними.
Через це при вигині не виникає великої тріщини, а ?/p>