Альтернативные виды энергии

Контрольная работа - Физика

Другие контрольные работы по предмету Физика

ля питания телефонных сетей в не электрифицированных районах или же для малых потребителей тока (радиоаппаратура, электрические бритвы и зажигалки и т.п.). С 80-х годов прошлого века фотоэлементы стали использоваться в авиации в плане строительства экспериментальных летательных аппаратов, использующих солнечные зеркала, установленные преимущественно на крыльях, в качестве источника питания для работы тяговых электродвигателей и электросистем летательного аппарата.

Продолжается изучение возможностей более широкого использования гелиоустановок: солнечные крыши на домах для энерго- и теплоснабжения, солнечные крыши на автомобилях для подзарядки аккумуляторов, солнечные фермы в сельских районах и т.д.

Однако не обходится без недостатков, и здесь камнем преткновения солнечной электроэнергетики является низкий КПД кремниевых элементов. Дело в том, что лишь небольшая часть солнечной энергии поглощается электронами в полупроводниках. Львиная доля падающего излучения идет на нагрев фотоэлемента (что, между прочим, ухудшает его фотоэлектрические характеристики), какая-то часть отражается, какая-то пронизывает его насквозь. КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16%, у лучших образцов до 25%. В лабораторных же условиях уже достигнут КПД 40,7 %.

Также существенного повышения КПД фотоэлектрических преобразователей (ФЭП) удалось добиться за счёт создания преобразователей с двухсторонней чувствительностью (до +80 % к уже имеющемуся КПД одной стороны), применения люминесцентно переизлучающих структур, предварительного разложения солнечного спектра на две или более спектральные области с помощью многослойных плёночных светоделителей (дихроичных зеркал) с последующим преобразованием каждого участка спектра отдельным ФЭП и т. д.

Однако даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт/м2. Поэтому, чтобы коллекторы солнечного излучения собирали за год энергию, необходимую для удовлетворения всех потребностей человечества, нужно разместить их на территории 130 000 км2. Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Т.к материалом для простейшего коллектора солнечного излучения служит металл (как правило, алюминий), то согласно расчетам специалистов, изготовление коллекторов солнечного излучения площадью в 1 км2, потребует примерно 10 тыс. тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1150 миллинов тонн.

Из вышеизложенного ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики.

Солнечная энергетика относится к наиболее материалоёмким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а, следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Пока ещё электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами.

Некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья или сложности его переработки. Отдельные методы улучшения энергетических и эксплуатационных характеристик ФЭП, например за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т.д.

Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, то есть фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью. Изготовление фотоэлементов и сборка солнечных батарей на автоматизированных линиях обеспечит многократное снижение себестоимости батареи.

Наиболее вероятными материалами для фотоэлементов СЭС считаются кремний (к сожалению, ресурс его эксплуатации ограничивается 25-30 годами), Cu(In,Ga)Se2 и арсенид галлия (GaAs), причём в последнем случае речь идёт о гетерофотопреобразователях (ГФП) со структурой AlGaAs-GaAs.

Ученые надеются, что эксперименты, которые они проводят на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.

Поэтому специалисты непрерывно стремятся усовершенствовать солнечные элементы и сделать их эффективнее. Новый рекорд в этом отношении принадлежит Центру прогрессивных технологий компании Боинг. Созданный там солнечный элемент преобразует в электроэнергию 41 % попавшего на него солнечного света.

Это достижение стало возможным, с одной стороны, также благодаря использованию двухслойной конструкции. Верхний слой - из арсенида галлия. Он поглощает излучение видимой части спектра. Нижний слой - из антимонида галлия и предназначен улавливать инфракрасное излучение, которое обычно теряется. С другой стороны, высокая эффективность достигается благодаря специальному покрытию, преломляющему свет и фокусирующему его на активные области солнечной ячейки.

Солнечные пруды. Солнечные пруды - еще более дешевый способ улавливать солнечную энергию. Искусственны?/p>