Модуляція оптичного випромінювання

Контрольная работа - Физика

Другие контрольные работы по предмету Физика

ють із площиною поляризації вхідного променя, тобто з?являються звичайний та незвичайний промені.

Назви звичайний та незвичайний відповідають різному поводженню променів у кристалі. В анізотропному середовищі в довільному напрямку розповсюджуються дві лінійно поляризовані хвилі із взаємно перпендикулярними поляризаціями. Це означає, що існує дві поверхні хвильових векторів. В одноосному кристалі одна з цих поверхонь - сфера і відповідна хвиля має сферичний фронт. Це звичайна хвиля і для неї кристал є ізотропним середовищем. Хвильовий фронт незвичайної хвилі є еліпсоїдом обертання (для одноосних кристалів). Це зумовлює особливості заломлення світла: при проходженні межі разділу ізотропне середовище - одноосний кристал падаючий промінь подвоюється, звичайний промінь поводить себе аналогічно хвилям в ізотропному середовищі, заломлений промінь лежить у одній площині із променем, що падає (для нього поверхня хвильових векторів- сфера, а не еліпсоїд).

Другий промінь - незвичайний, він є аномальним, у загальному випадку він не лежить у площині падіння. Звичайний промінь має постійну швидкість розповсюдження, яка не залежить від зовнішнього впливу на речовину, швидкість другого змінюється у відповідності з мірою зовнішнього впливу на кристал

 

; . (4)

 

Таким чином, після проходження крізь анізотропне середовище плоскополяризований промінь перетворюється в два когерентних плоскополяризованих промені, що мають зрушення фаз світлових коливань. При складанні цих коливань за межами анізотропного середовища утвориться промінь світла, характер поляризації якого відрізняється від лінійної поляризації вхідного променя та залежить від зрушення фаз між звичайним та незвичайним променями. Модуляція поляризації за допомогою поляроїдів перетворюється в амплітудну.

При зовнішньому впливі (електричному, магнітному, механічному) на анізотропне середовище змінюється еліпсоїд показників заломлення, що веде відповідно до зміни двопроменезаломлення. При цьому буде змінюватися швидкість незвичайного променя, а на виході анізотропного середовища буде змінюватися характер поляризації світла. Зміна поляризації може бути перетворена у зміну інтенсивності за рахунок інтерференції між складовими поляризованої хвилі, тобто можлива реалізація амплітудної модуляції.

Деякі матеріали в електричному полі стають двопроменезаломлюючими (наведене двопроменезаломлення). Відомі два різновиди електрооптичного ефекту: нелінійний (квадратичний) електрооптичний ефект Керра та лінійний оптичний ефект Поккельса. Зміна коефіцієнта заломлення кристала залежить від типу кристала, прикладеної електричної напруги, її напрямку відносно оптичних осей кристала X, Y, Z. Оптична анізотропна речовина в електричному полі набуває властивостей двопроменезаломлення з оптичною віссю, яка направлена вздовж силових ліній електричного поля (ефект Керра). При розповсюдженні світла перпендикулярно до оптичної осі існує таке співвідношення

 

, (5)

 

де К - постійна Керра, ?-довжина оптичної хвилі; E-напруженість прикладеного електричного керуючого поля.

При проходженні шляху L різниця оптичних шляхів звичайного та незвичайного променів складає.

 

, (6)

 

а різниця фаз між хвилями

 

. (7)

 

Ефект Керра має дуже малу інерційність, тобто запізнення зміни оптичної анізотропії від напруженості керуючого електричного поля не перевищує 10-10с. Це дозволяє створити швидкодіючі ключі, модулятори світла та інші прилади, що називаються осередками Керра. За відсутності зовнішнього поля осередок не пропускає світло, при появі зовнішнього поля, коли осередок діє як чвертьхвильова пластинка, інтенсивність світла, що пройшло крізь неї, сягає максимуму, таким чином, осередок діє як модулятор інтенсивності (потужності) оптичного випромінювання. Наведене двопроменезаломлення пропорційне першому ступеню напруженості прикладеного до кристала електричного поля називається ефектом Поккельса. Ефект Поккельса має таку ж швидкодію, як і ефект Керра, однак напруга, що прикладається до кристала приблизно на порядок менша напруги, необхідної для одержання в осередку Керра однакового подвійного променезаломлення при рівних відстанях між електродами. В осередку Керра ця напруга складає кіловольти. Охолодження модулятора до температури, близької до точки Кюрі, дозволяє знизити напругу до 100 В.

Ефект Поккельса використовується для створення швидкодіючих ключів, модуляторів та інших приладів, що називаються осередками Поккельса. Ефект Поккельса виникає як при розповсюдженні променя вздовж прикладеної напруги або оптичної осі кристала - подовжній ефект, так і перпендикулярно йому - поперечний ефект (рис. 4).

Поперечні осередки Поккельса мають деякі переваги у порівнянні з подовжніми. Електроди у поперечних осередках розташовуються паралельно пучку світла, відстань між ними (d) може бути достатньо малою, а довжина шляху променя L достатньо великою. Це дозволяє створити напівхвильовий осередок з відносно невеликою різницею потенціалів між електродами та забезпечити необхідну різницю оптичних шляхів та розбіжність фаз поміж хвилями у відповідності з 6 та 7.

У подовжніх осередках розбіжність фаз між звичайною та незвичайною хвилями для фіксованої різниці потенціалів не залежить від довжини осередка, тому що при збільшенні його довжини зменшується напруженість електричного поля. Отже, збільшити роз