Модифицирование сплавов с нанокристаллической решеткой

Курсовой проект - Химия

Другие курсовые по предмету Химия

?ойких материалов. Так предел текучести увеличивается по сравнению с обычным состоянием в 2,5-3 раза а пластичность-либо уменьшается очень незначительно, либо для Ni3Al возрастает в 4 раза [8,33]. Композиты армированные углеродными нановолокнами и фуллеренами рассматриваются как перспективные материалы для работы в условиях ударных динамических воздействий, в частности для брони и бронежилетов [8].

Инструментальные материалы:

Инструментальные сплавы с нанозерном являются как правило более стойкими по сравнению с обычным структурным состоянием [8]. Нанопорошки металлов с включениями карбидов используют в качестве шлифующего и полирующего материала на конечных стадиях обработке полупроводников и диэлектриков [8].

Сварочное производство:

Благодаря применению новых технологий электрошлаковой, лазерной, диффузионной сварки появилась возможность успешно соединять материалы с особыми свойствами.

Более подробно рассмотрим применение наноструктур в сварочном производстве в пункте 3.2.

Ограничения в использовании наноматериалов:

Оказалось, что материалы с наноразмерным зерном отличаются хрупкостью. В ряде случаев, в т.ч. при использовании методов интенсивной пластической деформации, удается снизить проявление этого неприятного эффекта, например для нанокристаллических меди, титана и титановых сплавов, интерметаллида Ni3Al [8,33]. Тем не менее проблема остается достаточно актуальной. Важным ограничением для использования наноструктурных конструкционных материалов является их склонность к межкристаллитной коррозии из-за очень большой объемной доли границ зерен. В связи с этим они не могут быть рекомендованы для работы в условиях способствующих такой коррозии (диффузия с поверхности элементов внедрения и элементов диффундирующих по границам зерна, высокие температуры в сочетании с коррозионными воздействиями, радиация, состав сплава, склонный к изменениям химического состава по границам зерен и т.д.). Другим важным ограничением является нестабильность структуры наноматериалов, а следовательно, нестабильность их физико-химических и физико-механических свойств. Так при термических, радиационных, деформационных и т.п. воздействиях неизбежны рекристаллизационные, релаксационные, сегрегационные и гомогенизационные процессы, а также явления распада, фазовых превращений, спекания и заплывания нанопор и нанокапилляров, аморфизации или кристаллизации [11]. Например, углеродных нановолокон, предназначенных для передачи жидкости, могут повреждаться под действием вибраций и возбуждаемой потоком жидкости структурной неустойчивости углерода [55]. При формовании изделий из нанопорошков достаточно остро встает также проблема комкования (слипания наночастиц) в агломераты, что может осложнить получение материалов с заданной структурой и распределением компонентов.

 

3.2 Применение наноструктур в сварке

 

Инженерами рассмотрено применение наноматериалов и высокотемпературной обработки никельхромовых сплавов при электрошлаковом литье и электрошлаковой сварке. При этом возможно управление микро- и макроструктурой жаропрочных никельхромовых сплавов и их физико-механическими свойствами за счет введения в расплав наночастиц карбонитрида титана в виде нанокри - сталлов, которые в свою очередь служат центрами кристаллизации.

Нанопорошки применяют также при лазерной сварке. В настоящее время это один из способов сварки, где нанопорошки находят все большее применение.

Разработана технология лазерной сварки с применением нанопорошка, позволяющая получать сварной шов с существенно улучшенными прочностными свойствами. Особенность новой технологии - введение в сварной шов порошка тугоплавкого соединения (например карбида или нитрида титана) с наноразмерными частицами. Это позволяет управлять процессом кристаллизации металла при сварке. Введение нанопорошка в сварной шов изменяет процесс зародышеобразования, которое происходит на нано - размерных частицах на границе контакта трех фаз (наночастица-зародыш-расплав) и резко изменяет строение и размер (морфологию и дисперсность) растущего зерна. Структура шва вместо игольчато-дендритной становится квазиравноосной и мелкодисперсной. Уменьшается размер неметаллических включений, соответственно повышаются механические свойства (прочность и пластичность) металла шва, возрастает в несколько раз относительное удлинение, увеличиваются предел прочности и предел текучести.

Приведены результаты исследования процесса лазерной сварки с применением нанопорошковых инокуляторов. В качестве последних использовали тугоплавкие соединения TiN, TiC, Y203, а также их композиции, плакированные хромом. Подготовленную композицию наносили в виде суспензии на поверхность свариваемых пластин. Применение наномодификаторов позволяет повысить скорость сварки при той же мощности луча за счет увеличения коэффициента поглощения интенсивности лазерного излучения. При этом уменьшается ширина сварного шва, ЗТВ, улучшается качество соединения, измельчается структура металла сварного шва, существенно возрастают его механические характеристики. В работе [8] исследовали лазерную сварку стали с титановым сплавом. Для проведения экспериментов использовали коррозионно-стойкую сталь и титановый сплав с промежуточными вставками. Наиболее эффективной оказалась вставка на основе меди М1. При этом сварное соединение с медной вставкой обладает высокой прочностью.

Помимо сварки пла?/p>