Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Т...
Дипломная работа - Разное
Другие дипломы по предмету Разное
новки.
В схемах защиты конденсаторных установок применяются обычные электромагнитные токовые реле мгновенного действия, могут быть использованы также индукционные токовые реле с ограниченно зависимой выдержкой времени. Эти реле обеспечивают не только защиту от токов короткого замыкания, но и от перегрузки.
Защита конденсаторной установки от перегрузки может работать надежно в том случае, если количество включенных конденсаторов не изменяется. Но если в условиях автоматического регулирования мощности конденсаторных установок под один главный выключатель присоединено несколько конденсаторных установок и каждая имеет свой переключатель, то при включении или отключении части установки ток, протекающий через токовые реле, будет изменяться. Производить изменение уставок реле при всяком изменении включенной мощности установки не допускается.
В этом случае устанавливают на каждой секции установки отдельный комплект трансформаторов тока с токовыми реле, которые действуют на главный выключатель, предусматривающий отключение всей установки в целом.
Селективность действия общей защиты конденсаторной установки должна также обеспечиваться соответствующим выбором индивидуальной защиты самих конденсаторов.
Индивидуальная защита конденсаторов нужна для конденсаторных установок, в которых применяют конденсаторы на напряжение 3, 6, 10 кВ. Отличие этих конденсаторов от конденсаторов напряжением до 1 000 В заключается в том, что они не имеют встроенной индивидуальной защиты.
При коротком замыкании в конденсаторах очень важно не допускать в них возрастания энергии дуги короткого замыкания, возникающей внутри поврежденного конденсатора, до величины, при которой корпус конденсатора может быть разрушен. Невыполнение этого требования может привести не только к разрушению самих конденсаторов, но и к повреждению находящегося вблизи них оборудования.
Защиту конденсаторов на напряжение 310 кВ от токов короткого замыкания осуществляют быстродействующими и токоограничивающими плавкими предохранителями типа ПК. При правильном выборе предохранителей своевременно локализуется повреждение защищаемых конденсаторов.
Основными условиями при выборе силовых предохранителей для защиты конденсаторов являются следующие:
номинальное напряжение предохранителей должно соответствовать напряжению сети, в которой устанавливаются конденсаторы;
предохранители должны выдерживать значительные колебания нагрузки, обычные в условиях нормального режима работы конденсаторов;
предохранители должны быть рассчитаны на периодические переходные токи. Для конденсаторов малой мощности броски тока по отношению к номинальному при включении имеют большую кратность, чем для мощных конденсаторов;
при параллельном соединении конденсаторов предохранители должны выдерживать максимальный разрядный ток, протекающий от неповрежденных конденсаторов к поврежденному;
предохранители должны быстро отключать поврежденный конденсатор, обеспечивая при этом требования селективности;
разрывная мощность предохранителей должна быть не меньше возникающей на выводах конденсатора мощности короткого замыкания;
при пробое отдельных соединенных последовательно секций конденсатора номинальный ток плавкой вставки предохранителя не должен значительно превышать номинальный ток конденсатора.
6.17. Потери в кабелях связанные с низким коэффициентом мощности
Принимаем начальный cos=0,7; с учетом компенсации cos=0,95.
Потери учитываем только в кабельной линии от ГПП-33 до РП-365, т.к. коэффициент мощности увеличивается только до места установки компенсирующих устройств.
Сопротивление кабеля ААБлГ-4(3х185), l=707м от ГПП-33 до РП-365
Рабочий ток при cos=0,8
Рабочий ток при cos=0,95
Потери активной энергии при cos=0,7
Потери активной энергии при cos=0,95
Разность потерь активной энергии за год
6.18. Добавочные потери от высших гармоник в электрических машинах
Потери в электрических машинах. При работе синхронных и асинхронных двигателей в условиях несинусоидального напряжения возникают добавочные потери мощности, обусловленные высшими временными гармониками тока в цепях статора и ротора. Появляются также добавочные потери в стали статора и ротора; однако эти потери малы и ими можно пренебречь. Основная часть добавочных потерь от гармоник в синхронных машинах приходится на долю демпферной клетки и обмотки статора; потери в обмотке ротора, как правило, оказываются меньшими. В асинхронных двигателях высокого напряжения потери в статоре и роторе примерно одинаковы.
Оценка величин потерь от высших временных гармоник в синхронных двигателях производим по кривым рис.3-6. [7], на которых представлены отношения этих потерь РД при напряжении, равном одному проценту напряжения основной частоты, к суммарным номинальным потерям Рном.
Удельные потери для одной гармоники будут различными в зависимости от того, какую последовательность образует система векторов напряжения этой гармоники, поскольку различной оказывается частота токов в роторе и демпферной системе. Используем средние значения удельных потерь, рассчитанных для случая прямого и обратного следования фаз векторов напряжения гармоник.
Для СД компрессорной станции
Суммарные потери Р, % определяемые всеми гармониками напряжения
, (6.29)
для СД Рном=0,003Рном=0,003*3200*8=81,6кВт
по кри