Модель тракта прослушивания гидроакустических сигналов

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование

частотной области на 4?f. Перекрытие входных выборок 17%

 

Рис 17а. Состыкованная реализация восстановленного сигнала после сдвига его полосы в частотной области на 4?f. Перекрытие входных выборок 25%

 

Рис 17б. Состыкованная реализация восстановленного сигнала после сдвига его полосы в частотной области на 5?f. Перекрытие входных выборок 25%

И также в результате проведенного моделирования установлено, что осуществить сдвиг частот без потери качества прослушивания можно только в случае, если величина перекрытия входных выборок является делителем числа n - базы БПФ. При этом сдвинуть на один спектральный отсчет или на нечетное число отсчетов нельзя ни при какой величине перекрытия, иначе происходят искажения и нестыковки последовательных фрагментов восстановленного сигнала.

В таблицу 1 сведены полученные в результате проведенного моделирования данные о соотношении величины перекрытия входных выборок и числа спектральных отсчетов, на которые можно сдвигать (понижать или повышать) полосу сигнала.

 

Таблица 1 . Взаимосвязь минимальной полосы частотного сдвига от величины перекрытия входных выборок

 

На основании вышеизложенного, можно сделать выводы о том, что для устранения эффектов, вызванных появлением некорректных отсчетов при формировании канала наблюдения в частотной области и не во всей полосе, а в ограниченной полосе, необходимо:

- обязательное исключение части отчетов в восстановленной реализации сигнала

из дальнейшей обработки;

- применение частотного фильтра с ЧХ, отличной от прямоугольной;

- расширение полосы обработки.

При этом величина перекрытия входных выборок должна быть больше суммы максимальной задержки сигнала на элементах АР и длительности ИПХ частотного фильтра. Других ограничений на величину перекрытия не накладывается.

Традиционно информация, используемая в тракте шумопеленгования, берется с перекрытием входных выборок на величину ?. Это реализуется в интересах следующих задач и трактов гидроакустического комплекса:

  1. тракты автоматического сопровождения цели (АСЦ) и выработки классификационной информации по ним;
  2. тракт обнаружения дискретных составляющих сигнала во всем секторе обзора;
  3. задача выделения огибающей сигналов во всем секторе обзора.

Однако для тракта прослушивания сигналов и помех, в котором для удобства оператора реализована (в цифровой области) возможность понизить частоту прослушивания, оказалось, что величина перекрытия входных выборок должна быть делителем числа n - количество точек БПФ.

Поскольку для процедуры БПФ обычно выбирают число n, являющееся степенью 2: n=2x ,

где x целое положительное число, то и величина перекрытия должна быть тоже степенью 2, так как других простых делителей у n нет.

4 Программный макет тракта прослушивания

 

4.1 Структурная схема алгоритма обработки в тракте прослушивания

 

Структурная схема алгоритма обработки в тракте прослушивания цифровой ГАС с формированием каналов наблюдения в частотной области приведена на рисунке 18.

 

Рис. 18 Структурная схема алгоритма обработки в тракте прослушивания

 

1) АР антенная решетка, M количество ее приемных элементов;

2) АПО фильтрация сигнала, предварительное усиление;

3) АЦП аналого-цифровое преобразование с частотой дискретизации 24000Гц, процессов, принятых на М приемных элементах антенны; получаем дискретизированные по пространству и по времени выборки входного поля;

4) Набор реализаций с перекрытием 25 % точек;

5) БПФ n-точечное быстрое преобразование Фурье по всем М каналам. Частотное разрешение системы df=fd/n;

6) ФПК формирование пространственного канала: осуществляется в частотной области умножением на фазирующие коэффициенты и суммированием выходов задержанных реализаций. Получаем один выход в полосе от 1 до 8 кГц, границам полосы частот соответствуют номера частотных отсчетов Кн=[1000/df]=21 и Кв=[8000/df+0.5]=171.

7) Вырезание полосы частот, соответствующей заданному оператором номеру частотного диапазона Nd (от 1 до 3):

I чд - от Кн= 21 до Кв=53,

II чд - от Кн= 42 до Кв=106,

III чд - от Кн= 85 до Кв=171;

8) Сдвиг полосы в область от 0.3 кГц (для удобства оператора); сдвиг осуществляется на величину:

4?f = 187 Гц - в I чд,

32?f = 1497 Гц во II чд,

76?f = 3556 Гц в III чд;

9) Умножение на спектральное окно, в нашем случае окно Ханна с числом точек, зависящим от ширины частотного диапазона:

K=53 в I чд,

K=81 во II чд,

K=99 в III чд ;

10) Восстановление сигнала во временную область с использованием процедуры ОБПФ на те же самые n точек;

11) Отбрасывание некорректных отсчетов по n/8 точек в начале и в конце реализации;

12) Стыковка реализаций;

13) Цифро-аналоговое преобразование (ЦАП) с частотой дискретизации 24000кГц;

14) Вывод результатов на динамик или выносные аудиосистемы.

 

4.2 Структурная схема программного макета тракта прослушивания

 

В соответствии с описанными в предыдущих разделах алгоритмами функционирования тракта прослушивания для выбора параметров и уточнения алгоритмов обработки в среде инженерных расчетов MatLab была написана моделирующая работу этого тракта программа. Язык программирования среды MatLab является наиболее удобным для работы с матричными структурами данных, а также содержит большое число вспомогательных функций и операций над матрицами и многомерными массива