Моделирование, как необходимый научный метод познания и его связь с детерминированными и стохастическими методами ИЗУЧЕНИЯ ЛЮБОГО явления или процесса

Информация - Философия

Другие материалы по предмету Философия

теорию к любым явлениям, имеющим в своей основе аналогичные структуры исходных понятий.

Так, например, в курсе геометрии в разделе планиметрия понятие точки не вводится, а понятие отрезок прямой o-b вводится как континуальное множество точек последовательность точек c, ведущих из начальной точки отрезка o к конечной точке b, имеющее наименьшую длину

 

Рис. 1

Путем продолжения отрезка в направлении от точки d к с получаем полупрямую, а продолжая отрезок и в противоположную сторону от точки d, будем иметь бесконечную прямую(рис. 1).

В дальнейшем, точки рассматриваются как места пересечения линий.

Рассмотрим проективные модели Римана: проведем через точку o прямой перпендикуляр (рис. 2), на котором отметим точку o p, на отрезке o-o p, как на диаметре, построим окружность, касающуюся прямой в точке o. Точку o назовем полюсом.

 

Рис. 2

 

Соединим полюс с точками d, c и b, каждая из приведенных проектирующих прямых пересекает окружность в точках d , c и b . Очевидно, между точками d и d , c и c , b и b , имеется взаимооднозначное соответствие. Полюс o p взаимооднозначно соответствует бесконечно удаленной точке прямой. Как видно в проективной модели Римана имеется образ одной бесконечно удаленной точки прямой это точка, совпадающая с полюсом o p, в то время как на рис. 1 могло показаться, что прямая обладает двумя бесконечно удаленными точками. В развитие этой модели приведем проективную модель Римана для сферы и плоскости N.

Возьмем плоскость N, в точке o которой поместим сферу диаметром o-o p. Рассматривая точку o p как полюс проектирования, спроектируем

 

Рис. 3

 

прямыми, проходящими через полюс o p, расположенные в плоскости N, то точки d, c, b на поверхность сферы в виде точек-образов d , c , b . Как и в линейном случае (рис. 2) между точками d, c, b и их проективными образами d , c , b имеется взаимно однозначное соответствие. Доказывается, что при таком проективном преобразовании сохраняются углы между линиями d, c, b на плоскости и линиями d , c , b на поверхности сферы. Рассмотренное проектированное преобразование служит теоретическим основанием для изображения карты земной поверхности на плоскости N и широко используется в навигации, в морском и авиационном штурманском деле. Полюс проектирования o p по Риману, также как и в линейном случае (рис. 2), является проективным образом бесконечно удаленной точки плоскости. Риманова модель дает основание считать, что плоскость содержит не множество бесконечно удаленных точек, а только одну. Такой подход дает большие удобства для математических построений в теории функции комплексного переменного и в прикладных задачах.

 

2. ГИПОТЕЗЫ КАК НЕОБХОДИМЫЕ ПРИЗНАКИ,

ОПРЕДЕЛЯЮЩИЕ СВОЙСТВА РАЗРАБАТЫВАЕМОЙ

МОДЕЛИ ИЛИ ПРОЦЕССА

 

Изучение всякого непознанного явления начинается с наблюдения его проявления в природе или в лаборатории. Сделанные наблюдения позволяют высказать ряд исходных предположений (гипотез), позволяющих объяснить на модели изучаемое явление и его свойства. Справедливость высказанных гипотез проверяется экспериментом. Подтвержденные экспериментом гипотезы путем логических рассуждений желательно оформленных в виде математического описания и построения превращаются в теорию исследуемого явления. При этом высвечиваются две стороны явления качественное и количественное [1].

Таким образом, модель изучаемого явления с помощью вводимых гипотез приобретает ряд свойств, опираясь на которые можно путем математических и логических действий проследить, как принятая модель взаимодействует с окружающими объектами и, следовательно, как она реагирует на внешнее воздействие. При этом варианте возможно, что и первоначальное свойство модели изменится [5].

Проиллюстрируем роль вводимых гипотез на примерах.

Для хранения сжатого газа при высоких давлениях обычно применяются тонкостенные цилиндрические резервуары-баллоны, представляющие собой цилиндрическую оболочку вращения. Оболочка считается тонкостенной, если толщина стенки в 20-30 раз меньше диаметра баллона. Такая оболочка может рассчитываться по безмоментной теории, следовательно элемент стенки баллона работает только на растяжение-сжатие, таким образом гипотеза о малой толщине стенки сводится к тому, что изгибающими моментами, возникающими в стенке баллона можно пренебречь; в этом случае для определения действующих в оболочке нормальных напряжений можно пользоваться известным уравнением Лапласа (см. рис. 4)

 

 

где, радиусы меридиана кольцевого сечения;

давление газа;

толщина стенки.

Из этого уравнения выходит, что меридиональные нормальные напряжения м в стенке баллона в 2 раза меньше тангенциальных (кольцевых) напряжений, следовательно разрушение баллона происходит в виде трещины, сориентированной вдоль образующей оболочки.

Для расчета толстостенной цилиндрической оболочки приходится применять моментную теорию, основанную на гипотезе, что и в стенке оболочки действуют наряду с нормальными напряжениями еще и поперечные силы и изгибающие моменты (рис. 5). Это уточненная модель приводит к совершенно иным уравнениям (дифференциальному уравнению четвертого порядка)

 

 

 

гдеW перемещение элемента стенки резервуара в радиальном направлении;

Рис. 4.

 

 

 

Рис. 5.

упругая постоянная стенки;

модуль упругости материала;

толщина стенки резервуара;