Модели олигополии, основанные на некооперативной стратегии
Контрольная работа - Экономика
Другие контрольные работы по предмету Экономика
в модели Штекельберга (SI или SII).
Из рисунка 1.4 следует, что у фирмы, становящейся лидером, прибыль увеличивается по сравнению с той, которую она получала при конкуренции по модели Курно: лидер переходит на более низкую изопрофиту.
Можно доказать, что при линейных функциях отраслевого спроса и общих затрат дуополистов в модели Штекельберга рыночная цена будет ниже, чем в модели Курно.
Модель Чемберлина описывает некооперативную количественную последовательную игру дуополистов. Устраняя недостатки моделей Курно и Штекельберга, она учитывает, что в отрасли оба дуополиста не придерживаются предположения о заданности выпуска соперника, а учитывают, что он будет меняться в ответ на действия соперников. В отличие от модели Курно, где дуополисты не максимизируют совокупную прибыль отрасли, в этой модели фирмы способны это сделать, не прибегая к сговору.
В точках, лежащих на отрезке AB (рисунок 1.5) каждый дуополист получает больше прибыли, чем в точке С, так как он попадает на более выгодную изопрофиту.
Рисунок 1.5 Контрактная кривая
Отрезок AB получается путем соединения точек касания изопрофит дуополистов Курно, образующихся в заштрихованной области, ограниченной изопрофитами, пересекающимися в точке С. Отрезок AB является частью контрактной кривой ABCD, соединяющей точки касания изопрофит, в которых каждый дуополист получает такую же прибыль, как в равновесии Курно, либо большую, что позволяет максимизировать совокупную прибыль отрасли. Фирмы в модели Чемберлина получают максимальную прибыль и одновременно максимизируют общую прибыль отрасли, выбирая любую точку на контрактной кривой.
Однако модель Чемберлина имеет ряд ограничений в объяснении реальной ситуации в отрасли, поскольку она не учитывает возможности входа в отрасль других продавцов, вследствие чего равновесие в ней становится нестабильным. Кроме того, на практике для максимизации совокупной прибыли дуополисты должны иметь представление о кривой рыночного спроса и кривых издержек друг друга, что, при отсутствии сговора, проблематично.
К моделям некооперативной ценовой олигополии относят модели Бертрана и Эджуорта.
Модель олигополии Бертрана указывает на то, что существование нескольких крупных фирм в отрасли приведет к ценовой войне между ними. Ценовая война будет продолжаться до тех пор, пока цена не снизится до уровня предельных и средних издержек. Олигополисты независимо друг от друга вынуждены будут установить одну и ту же цену, обеспечивая рыночный спрос на уровне предложения на рынке совершенной конкуренции. Олигополисты Бертрана не смогут получить положительную прибыль и, следуя предпосылкам модели, в условиях равновесия разделяют рынок между собой. Доля предложения каждой фирмы на рынке составит часть рыночного спроса. При одинаковом количестве фирм на рынке олигополист Бертрана в условиях равновесия предлагает на рынок больше продукции, чем олигополист Курно, а рыночный спрос удовлетворяется в большем объеме при более низкой цене.
С увеличением числа фирм на рынке изменяется только один параметр рыночного равновесия: уменьшается доля предложения каждой отдельной фирмы. В результате при значительном увеличении числа фирм на рынке уровень выпуска отдельной фирмы становится слишком мал по сравнению с размерами рынка. В этом крайнем случае рынок олигополии Бертрана, как и рынок Курно, трансформируется в рынок совершенной конкуренции.
Пусть две фирмы на рынке предлагают однородную продукцию, зная функцию рыночного спроса, но имеют неравные условия по издержкам производства. У обеих фирм предельные издержки по-прежнему равны средним, но у первой фирмы из уровень меньше.
При данных предпосылках ценовая война неизбежна. Предположим, что ценовая война привела к понижению цены до уровня средних издержек второй фирмы. Равновесие на рынке при такой цене не может быть достигнуто, поскольку первая фирма ещё способна получить выгоду от снижения цены. Верхняя граница изменения цен существует, поскольку фирме невыгодно устанавливать цену ниже уровня средних и предельных издержек. Если цена, назначенная первой фирмой, выше её средних издержек, но ниже средних издержек фирмы-конкурента, то первая фирма сможет привлечь покупателей боле низкой ценой и получить положительную прибыль. Производственная деятельность второй фирмы окажется убыточной. Продолжение ценовой войны будет увеличивать убытки второй фирмы.
Обобщая модель для случая n фирм в отрасли, можно сделать следующие выводы. При заданных условиях стратегического взаимодействия в выигрышной ситуации окажутся те фирмы, чей уровень средних и предельных издержек будет ниже. Следовательно, число фирм на рынке может сократиться. Равновесие на рынке олигополии Бертрана также не будет единственным и, в частности, может быть достигнуто, если одна или несколько фирм смогут наладить безубыточное производство при одном и том же уровне рыночной цены.
Модель дуополии Эджуорта описывает некооперативную ценовую последовательную игру дуополистов. В отличие от модели Бертрана, в ней производственные мощности фирм ограничены. Предположим, что дуополисты поделили рынок пополам, так как имеют производственные мощности для покрытия половины рыночного спроса (при P=AC=MC, как у Бертрана). Если дуополист 1 решит повысить свою цену по сравнению с равновесием Бертрана, чтобы получить дополнительную прибыль, а дуополист 2 сохранит цену, то все покупатели, прив?/p>