Методы решения управленческих задач в АПК: регрессионный анализ
Контрольная работа - Менеджмент
Другие контрольные работы по предмету Менеджмент
ользованием регрессионного анализа. С этой целью подбирают класс функций, связывающий результативный показатель у и аргументы х1, х2,…, хк отбирают наиболее информативные аргументы, вычисляют оценки неизвестных значений параметров уравнения связи и анализируют свойства полученного уравнения.
Функция f(х1, х2,…, хк) описывающая зависимость среднего значения результативного признака у от заданных значений аргументов, называется функцией (уравнением) регрессии. Термин регрессия (лат. regression- отступление, возврат к чему-либо) введен английским психологом и антропологом Ф.Гальтоном и связан исключительно со спецификой одного из первых конкретных примеров, в котором это понятие было использовано. Так, обрабатывая статистические данные в связи с анализом наследственности роста, Ф. Гальтон нашел, что если отцы отклоняются от среднего роста всех отцов на x дюймов, то их сыновья отклоняются от среднего роста всех сыновей меньше, чем на x дюймов. Выявленная тенденция была названа регрессией к среднему состоянию. С тех пор термин регрессия широко используется в статистической литературе, хотя во многих случаях он недостаточно точно характеризует понятие статистической зависимости.
Для точного описания уравнения регрессии необходимо знать закон распределения результативного показателя у. В статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии, так как исследователь не располагает точным знанем условного закона распределения вероятностей анализируемого результатирующего показателя у при заданных значениях аргумента х.
Рассмотрим взаимоотношение между истинной f(х) = М(у1х), мо дельной регрессией ? и оценкой y регрессии. Пусть результативный показатель у связан с аргументом х соотношением:
у=2х1,5+?,
где ? случайная величина, имеющая нормальный закон распределения, причем М? = 0 и D ? = ?2. Истинная функция регрессии в этом случае имеет вид: f (х) = М(у/х) = 2х1.5.
Предположим, что точный вид истинного уравнения регрессии нам не известен, но мы располагаем девятью наблюдениями над двумерной случайной величиной, связанной соотношением уi= 2х1,5+?, и представленной на рис. 1
Рисунок 1 Взаимное расположение истиной f (х) и теоретической ? модели регрессии
Расположение точек на рис. 1 позволяет ограничиться классом линейных зависимостей вида ? = ?0+?1x. С помощью метода наименьших квадратов найдем оценку уравнения регрессии у = b0+b1x. Для сравнения на рис. 1 приводятся графики истинной функции регрессии у=2х1,5, теоретической аппроксимирующей функции регрессии ? = ?0+?1x .
Поскольку мы ошиблись в выборе класса функции регрессии, а это достаточно часто встречается в практике статистических исследований, то наши статистические выводы и оценки окажутся ошибочными. И как бы мы ни увеличивали объем наблюдений, наша выборочная оценка у не будет близка к истинной функции регрессии f (х). Если бы мы правильно выбрали класс функций регрессии, то неточность в описании f(х) с помощью ? объяснялась бы только ограниченностью выборки.
С целью наилучшего восстановления по исходным статистическим данным условного значения результативного показателя у(х) и неизвестной функции регрессии f(х) = М(у/х) наиболее часто используют следующие критерии адекватности (функции потерь).
Метод наименьших квадратов. Согласно ему минимизируется квадрат отклонения наблюдаемых значений результативного показателя у, (i = 1,2,..., п) от модельных значений ,? = f(хi), где , хi - значение вектора аргументов в i-м наблюдении: ?(yi - f(хi)2 > min. Получаемая регрессия называется среднеквадратической.
Метод наименьших модулей. Согласно ему минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений. И получаем ,? = f(хi), среднеабсолютную медианную регрессию ? |yi - f(хi )| >min.
Регрессионным анализом называется метод статистического анализа зависимости случайной величины у от переменных хj = (j=1,2,..., к), рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения хj.
Обычно предполагается, что случайная величина у имеет нормальный закон распределения с условным математическим ожиданием у , являющимся функцией от аргументов х/ (/= 1, 2,..., к) и постоянной, не зависящей от аргументов, дисперсией ?2.
В общем линейная модель регрессионного анализа имеет вид:
Y = ?k j=0?j ?j (x1, x2 . . ..,xk)+?
где ?j - некоторая функция его переменных - x1, x2 . . ..,xk , ? - случайная величина с нулевым математическим ожиданием и дисперсией ?2 .
В регрессионном анализе вид уравнения регрессии выбирают исходя из физической сущности изучаемого явления и результатов наблюдения.
Оценки неизвестных параметров уравнения регрессии находят обычно методом наименьших квадратов. Ниже остановимся более подробно на этой проблеме.
Двумерное линейное уравнение регрессии. Пусть на основании анализа исследуемого явления предполагается, что в среднем у есть линейная функция от х, т. е. имеется уравнение регрессии
у=М(у/х)=? 0+ ?1 х)
где М(у1х) - условное математическое ожидание случайной величины у при заданном х; ?0 и ?1 - неизвестные параметры генеральной совокупности, которые надлежит оценить по результатам выборочных наблюдений.
Предположим, что для оценки параметров ?0 и ?1 из д?/p>