Методы анализа питьевой воды
Дипломная работа - Химия
Другие дипломы по предмету Химия
? в контрольной пробе. Поправочный коэффициент (К) вычисляют по формуле
,
где v - количество азотнокислого серебра, израсходованное на титрование, см3.
.4. Проведение анализа
.4.1. Качественное определение
В колориметрическую пробирку наливают 5 см3 воды и добавляют три капли 10 %-ного раствора азотнокислого серебра. Примерное содержание хлор-иона определяют по осадку или мути в соответствии с требованиями таблицы.
Характеристика осадка или мутиСодержание Сl-, мг/дм21. Опалесценция или слабая муть1-102. Сильная муть10-503. Образуются хлопья, осаждаются не сразу50-1004. Белый объемный осадокБолее 100
.4.2. Количественное определение
В зависимости от результатов качественного определения отбирают 100 см3 испытуемой воды или меньший ее объем (10-50 см3) и доводят до 100 см3 дистиллированной водой. Без разбавления определяются хлориды в концентрации до 100 мг/дм3. pН титруемой пробы должен быть в пределах 6-10. Если вода мутная, ее фильтруют через без зольный фильтр, промытый горячей водой. Если вода имеет цветность выше 30, пробу обесцвечивают добавлением гидроокиси алюминия. Для этого к 200 см3 пробы добавляют 6 см3 суспензии гидроокиси алюминия, а смесь встряхивают до обесцвечивания жидкости. Затем пробу фильтруют через без зольный фильтр. Первые порции фильтрата отбрасывают. Отмеренный объем воды вносят в две конические колбы и прибавляют по 1 см3 раствора хромовокислого калия. Одну пробу титруют раствором азотнокислого серебра до появления слабого оранжевого оттенка, вторую пробу используют в качестве контрольной пробы. При значительном содержании хлоридов образуется осадок AgCl, мешающий определению. В этом случае к оттитрованной первой пробе приливают 2-3 капли титрованного раствора NaCl до исчезновения оранжевого оттенка, затем титруют вторую пробу, пользуясь первой, как контрольной пробой.
Определению мешают: ортофосфаты в концентрации, превышающей 25 мг/дм3; железо в концентрации более 10 мг/дм3. Бромиды и йодиды определяются в концентрациях, эквивалентных Сl-. При обычном содержании в водопроводной воде они не мешают определению.
.5. Обработка результатов.
Содержание хлор-иона (X), мг/дм3, вычисляют по формуле
где v - количество азотнокислого серебра, израсходованное на титрование, см3;
К - поправочный коэффициент к титру раствора нитрата серебра;
g - количество хлор-иона, соответствующее 1 см3 раствора азотнокислого серебра, мг;- объем пробы, взятый для определения, см3.
Расхождения между результатами повторных определений при содержании Сl- от 20 до 200 мг/дм3 - 2 мг/дм3; при более высоком содержании - 2 отн. %.
4. Устройство анализируемого прибора. Универсальный иономер ЭВ-74
. Назначение.
Универсальный иономер ЭВ-74 предназначается для определения в комплекте с ионоселективными электродами активности одно- и двухвалентных анионов и катионов (величины pX) в водных растворах, а также для измерения окислительно-восстановительных потенциалов (величины Еh) в этих же растворах.
Иономер может использоваться также в качестве высокоомного милливольтметра.
При работе с блоком автоматического титрования прибор может быть использован для массового однотипного титрования.
Иономером ЭВ-74 можно производить измерения как методом отбора проб, так и непосредственно в лабораторных установках.
Иономер предназначен для применения в лабораториях научно-исследовательских учреждений и промышленных предприятий.
2. Устройство и принцип работы.
2.1. Общие сведения
Для измерения активности одно- и двухвалентных ионов в растворах используется электродная система с ионоселективными измерительными электродами и преобразователь. Электродвижущая сила электродной системы зависит от активности соответствующих ионов в растворе и определяется уравнениями (1) или (2).
Значение рХ контролируемого раствора определяется измерением э.д.с. электродной системы с помощью преобразователя, шкала которого проградуирована в единицах рХ. Градировочные значения э.д.с, могут быть вычислены при помощи уравнений (1) и (2).
.2. Принцип действия и схема преобразователя иономера
Работа иономера основана на преобразовании э.д.с. электродной системы в постоянный ток, пропорциональный измеряемой величине. Преобразование э.д.с. электродной системы в постоянный ток осуществляется высокоомным преобразователем авто компенсационного типа.
Электродвижущая сила Ех электродной системы (рис. 1) сравнивается с падением напряжения на сопротивлении R, через которое протекает ток Iвых. усилителя. Падение напряжения U вых. на сопротивлении R противоположно по знаку электродвижущей силе Ех на вход усилителя подается напряжение:
вх. =Eх-Uвых. =Eх-Iвых.R (4)
При достаточно большом коэффициенте усиления напряжение Uвых. мало отличается от э.д.с. электродной системы Sx благодаря этому ток, протекающий через электроды в процессе измерения, весьма мал, а ток Iвых. протекающий через сопротивление R, пропорционален э.д.с. электродной системы, т.е. рХ контролируемого раствора.
.3. Конструкция иономера ЭВ-74
Иономер состоит из преобразователя и подставки, предназначенной для крепления электродов и установки сосудов с контролируемым раствором.
. Преобразователь.
Общий вид преобразователя и элементы его конструкции показаны на рис. 5.
Для у?/p>