Методи математичної статистики
Контрольная работа - Математика и статистика
Другие контрольные работы по предмету Математика и статистика
Методи математичної статистики
Теорія ймовірностей і математична статистика виникли в середині XVII століття в результаті розвитку суспільства і товарно-грошових відносин.
Свою роль у цьому процесі відіграли й азартні ігри, вони послужили простими моделями для виявлення закономірностей у появі випадкових подій. Крім того, розвиток математичної статистики був обумовлений необхідністю обробляти дані, які зібралися до того часу в області керування державою: демографії, охороні здоровя, торгівлі й інших галузях господарської діяльності.
Можна перелічити досить довгий список імен великих учених, які додали свого внеску у розвиток математичної статистики: П.Ферма (16011665) і Б.Паскаль (16231662), Я. Бернуллі (16541705) і П.Лаплас (17491827), К.Гаусс (17771855) і С.Пуассон (17811840), Т. Байєс (17011761) та ін. Ці імена мають бути вже відомі читачам з назв часто застосовуваних статистичних процедур, тестів і розподілів.
Першим, хто вдало обєднав методи антропології і соціальної статистики з досягненнями в області теорії ймовірностей і математичної статистики, був бельгійський статистик Л.Кетле (17961874).
З його робіт випливало, що задача статистики полягає не лише у збиранні і класифікації даних, а й у їхньому аналізі з метою відкриття закономірностей. Л.Кетле одним з перших показав, що випадковості, які спостерігаються в живій природі, внаслідок їхньої повторюваності виявляють певну тенденцію, яку можна описати мовою математики. Л.Кетле заклав і основи біометрії.
Створення ж математичного апарата цієї науки належить англійській школі статистиків XIX століття, на чолі якої стояли Ф.Гальтон і К. Пірсон. Розроблені Ф.Гальтоном (18221911) і К. Пірсоном (18571936) біометричні методи увійшли в золотий фонд математичної статистики.
Пірсон запровадив у біометрії такі поняття, як середнє квадратичне відхилення і варіацію, йому належить розробка методу моментів, критерію згоди 2, він увів термін нормальний розподіл, який зараз загальноприйнятий у багатьох країнах. (Відомо ще багато варіантів назви цього розподілу, наприклад, лапласів розподіл, гауссів розподіл, розподіл Гаусса-Лапласа, розподіл Лапласа-Гаусса.
Як апроксимація до біноміального розподілу він розглядався Муавром ще в 1733р., однак Муавр не вивчав його властивостей.) К. Пірсон удосконалив запропоновані Гальтоном методи кореляції і регресії. Термін регресія був введений Ф.Гальтоном у 1886р. Гальтон встановив, що в середньому сини високих батьків мають не такий великий зріст, а сини батьків з невеликим зростом вище за своїх батьків. Це було інтерпретовано ним як регресія до посередності. Помилки в міркуваннях Гальтона були розяснені пізніше, приміром, Браунлі.
Однак біологи не відразу оцінили переваги, які давало використання математичної статистики в природознавстві. Положення дещо змінилося на краще, коли була обґрунтована теорія малих виборок.
Піонером у цій області був учень Пірсона В.Госсет, який опублікував у журналі Біометрика свою статтю під псевдонімом Стьюдент (звідси критерій Стьюдента). Вважається, що цінність роботи Стьюдента полягала не у значних числових змінах під час розрахунку тестової статистики. Багато вчених задовго до Стьюдента використовували співвідношення, яке тепер має його імя, але без урахування обсягу вибірок (числа ступенів свободи) і співвідносили отриманий результат з таблицями стандартного нормального розподілу (аналог критерію Стьюдента для нескінченного числа ступенів свободи), користуючись при цьому різними застереженнями під час інтерпретації результатів.
Цінність роботи Стьюдента полягає в усвідомленні того, що треба брати до уваги капризи малих вибірок, причому не тільки в тій задачі, з якої починав Стьюдент, але й у всіх подібних. Крім того, він розробив таблиці, які можна використовувати для визначення довірчих інтервалів і перевірки критеріїв значимості навіть на основі дуже малих вибірок, що дає можливість вирішення багатьох статистичних задач в області клінічних досліджень.
Подальший розвиток теорія малих вибірок одержала у працях Р. Фішера (18901962), основне місце в його роботі займали питання планування експерименту. Фішер запропонував у біометрії цілий ряд нових термінів і понять, розглянув фундаментальні принципи статистичних висновків, показав, що планування експериментів і обробка їхніх результатів дві нерозривно повязані задачі статистики.
Не можна не відзначити той величезний внесок, що зробили в розвиток теорії ймовірностей і математичної статистики російські вчені: О.Я. Хінчін (18941959), О.І. Хотимський (18921939), Б.С.Ястремський (18771962), В.І. Романовський (18791954), А.А.Ляпунов (19111973), А.Н.Колмогоров та його школа і багато інших.
У сучасній статистичній науці існує розподіл на дві основні школи: найбільш численна класична школа послідовники Фішера і його учнів, а також субєктивістська, чи байєсівська школа.
І хоча на рівні прикладної статистики результати, одержані в рамках цих різних наукових шкіл, досить добре погоджуються, з широкого кола теоретичних і філософських питань ці два напрямки часто розходяться, пропонуючи різні підходи до вирішення задач, у тому числі в області біометрії.
Стисло основну розбіжність у підходах можна було б охарактеризувати в такий спосіб: прихильники класичного підходу єдино можливою вважають частотну інтерпретацію імовірності (тому такий підхід називають ще frequentist school), суть їхнього підходу полягає в тому, що вони починають вирішення задачі з в?/p>