Метод конечных элементов
Курсовой проект - Физика
Другие курсовые по предмету Физика
олучим невязку, принимающую в различных точках области разное значение:
(2)
Необходимо сформулировать условие, позволяющее минимизировать эту невязку по всей области. Одним из вариантов такого условия может быть следующее уравнение:
Здесь Wn - некоторые весовые функции, в зависимости от выбора которых различают варианты метода взвешенных невязок,- область пространства, в которой ищется решение.
При выборе в качестве весовых функций дельта-фукций будем иметь метод, который получил название метод поточечной коллокации, для кусочно-постоянных функций - метод коллокации по подобластям, но наиболее распространенным является метод Галёркина, в котором в качестве весовых функций выбираются пробные функции N. В этом случае, если количество пробных функций равно количеству весовых функций, после раскрытия определенных интегралов приходим к замкнутой системе алгебраических уравнений относительно коэффициентов A.
где коэффициенты матрицы K и вектора Q вычисляются по формулам:
После нахождения коэффициентов A и подстановки их в (1), получаем решение исходной задачи.
Недостатки метода взвешенных невязок очевидны: поскольку решение ищется сразу по всей области, то количество пробных и весовых функций должно быть значительным для обеспечения приемлемой точности, но при этом возникают трудности при вычислении коэффициентов Kij и Qi, особенно при решении плоских и объемных задач, когда потребуется вычисление двойных и тройных интегралов по областям с криволинейными границами. Поэтому на практике этот метод не использовался, пока не был изобретен метод конечных элементов.
Идея МКЭ заключается в том, чтобы в методе взвешенных невязок воспользоваться простыми пробными и весовыми функциями, но не во всей области S, а в её отдельных подобластях (конечных элементах). Точность решения задачи необходимо обеспечить использованием большого числа конечных элементов (КЭ), при этом КЭ могут быть простой формы и вычисление интегралов по ним не должно вызывать особых затруднений. Математически переход от метода взвешенных невязок к МКЭ осуществляется с использованием специальных пробных функций, которые также называются глобальными базисными функциями, обладающих следующими свойствами:
) в узле аппроксимации функции имеют значение равное единице;
) функции отличны от нуля только в КЭ, содержащих этот узел аппроксимации, во всей остальной области равны нулю.
Общий алгоритм статического расчета МКЭ
В принципе общий алгоритм расчета МКЭ сводится к последовательности шагов (матричных операций), в результате выполнения которых определяются необходимые параметры решения задачи (перемещения, деформации, напряжения). На практике расчеты по МКЭ всегда выполняются с применением компьютерных технологий, реализующих известные матричные формулы и выражения для получения промежуточных и конечных результатов.
Ниже приведены основные этапы статического расчета конструкции МКЭ.
.Дискретизация конструкции.
Рассматриваемая область представляется в виде совокупности конечных элементов, соединенных между собой в узловых точках. Сами элементы могут иметь различную форму и размеры, например, в виде стержня, треугольной пластинки, прямоугольной в плане оболочки, пространственного тетраэдра (рис. 1, а). Выбор типа КЭ и общего их числа зависит от вида и формы конструкции, от требуемой точности, от характера внешней нагрузки и наложенных связей. Например, при расчете стержневых систем каждый стержень постоянного сечения принимается за отдельный элемент (рис. 1, б). Решение в этом случае получается точным.
Дискретизация континуальных систем (пластины, оболочки, массивы) является более сложной задачей. Общих рекомендаций по нанесению сетки или разбивке области на отдельные элементы нет. Обычно руководствуются предварительными представлениями о характере ожидаемого результата и в местах предполагаемых высоких градиентов искомых величин сетку КЭ сгущают. При решении двумерных задач (балка-стенка, изгиб плиты) дискретизация области обычно производится треугольными и прямоугольными элементами (рис. 1, в). Предполагается, что вся действующая нагрузка приводится к узловой, поэтому, например, в случае распределенной нагрузки для ее более точного моделирования бывает необходимо вводить дополнительные узлы и элементы. Заданные перемещения, жесткие или упругие связи также должны быть отнесены к узлам.
Рисунок 1. Дискретизация конструкции
Таким образом, первый этап заключается в составлении конечно-элементной схемы - дискретной модели конструкции. Здесь можно выделить следующие действия:
а) выбор типа КЭ (по геометрии, виду аппроксимации и т. п.);
б) разбивку области на КЭ (с нумерацией узлов и элементов);
в) описание каждого элемента: топологические (номера узлов в сетке), физико-механические (модуль упругости и т. п.), геометрические характеристики;
г) описание каждого узла (координаты в общей системе координат);
д) описание заданных узловых нагрузок и перемещений.
Несмотря на то, что перечисленные выше действия не опираются на строгие теоретические рекомендации и во многом выполняются интуитивно, первый этап имеет большое значение для дальнейшего расчета конструкции.
. Построение глобальных матрицы жесткости и вектора узловых сил.
Процедура основана на формировании матрицы же?/p>