Метод ИННК и его место в комплексе ГИС

Курсовой проект - Геодезия и Геология

Другие курсовые по предмету Геодезия и Геология

?сти радиационного гамма-излучения от ?з и таким образом изучить процесс уменьшения исследуемых частиц в горной породе от времени после окончания импульса быстрых нейтронов.

Интерпретируя такого рода зависимости интенсивности исследуемых частиц от времени по соответствующим методикам, можно получить нейтронные характеристики пород по разрезу скважины.

В зависимости от того, какие элементарные частицы регистрируются и при каких временных задержках ?з исследуются нейтронные поля, различают следующие методы: импульсный нейтрон-нейтронный метод по тепловым нейтронам ИННМ, импульсный нейтрон-нейтронный гамма-метод ИНГМ, импульсный метод гамма-излучения неупругого рассеяния ИНГМР.

3. Импульсный нейтрон-нейтронный каротаж

 

Наиболее широко применяется импульсно нейтрон-нейтронный каротаж, при котором регистрируется плотность тепловых нейтронов. Пространственно-временное распределение плотности тепловых нейтронов от импульсного источника быстрых нейтронов определяется нейтронными параметрами исследуемой среды, зависящих как от диффузионных характеристик горных пород D и ?n так и от длины замедления Lз, характеризующей их замедляющее свойства. Таким образом, данные импульсного нейтрон-нейтронного каротажа несут в себе информацию о водородосодержании пород через коэффициент диффузии D и длину Lз и о содержании в породах элементов с повышенными сечениями захвата через среднее время жизни тепловых нейтронов ?n .

Величина коэффициента диффузии различных пород варьирует в относительно небольших пределах (0,4•10-5 - 3•10-5 см2/с), зависит главным образом от водородосодержания и не зависит от минерализации пластовых вод.

Величина среднего времени жизни тепловых нейтронов горных пород определяется их поглощающими свойствами и изменяется в значительно больших пределах (4,6 1065 мкс), чем коэффициент диффузии.

В общем случае двух сред с разным водородосодержанием (D1D2) с разными поглощающими свойствами, т.е. среднее время жизни тепловых нейтронов первой среды ? не равно ?n2, второй среды на заданном расстоянии от источника, отношение плотностей тепловых нейтронов этих сред

[n1(?) и n2(?)].

 

n1(?) / n2(?) (D1D2) exp [?s((1/ ?n1) (1/ ?n2))] (1)

 

Величина n1 /n2 в большей степени зависит от поглощающих свойств гордых пород, чем от замедляющих, что и находит свое отражение при использовании ИННК для изучения разрезов скважин .

Основной измеряемой величиной в импульсно нейтрон-нейтронном каротаже является среднее время жизни тепловых нейтронов ?n. Из формулы (1) следует, что, изменяя время задержки ?s можно получить сколь угодно большие различия в величинах измеряемых плотностей нейтронов против нефтеносного и водоносного пластов. В этом одно из основных преимуществ импульсного нейтрон-нейтронного каротажа.

Радиус зоны исследования ИННК Rис определяется водородосодержанием среды и временем задержки:

С увеличением водородосодержания среды уменьшается коэффициент диффузии тепловых нейтронов и, следовательно, радиус исследования. Глубинность ИННК непрерывно возрастает с увеличением времени задержки. Однако с увеличением ?3 падает скорость счета импульсов, что приводит к большим статистическим погрешностям измерений.

В силу большой энергии нейтронов, испускаемых скважинным генератором нейтронов (до 14 МэВ), при соответствующем выборе времени задержки (?s = 1000 12000 мкс) радиус исследования ИННК (60-80 см) намного превышает глубинность нейтронных методов с ампульными нейтронными источниками. В этом существенное преимущество импульсного нейтрон-нейтронного каротажа.

Размер зонда оказывает влияние на расчленяющую способность ИННК против маломощных пластов и точность определения среднего времени жизни тепловых нейтронов. Длина зонда обуславливается расстоянием от мишени генератора нейтронов до середины индикатора. Точка записи условно относится к мишени прибора. При работе в нефтяных скважинах используется зонд длинной Ln=30 см, в газовых скважинах зонд с Ln = 50.

Влияние на величину плотности тепловых нейтронов в ИННК положения прибора в скважине относительно ее оси, стальной обсадочной колонны и цементного кольца, зоны проникновения фильтрата промывочной жидкости и других факторов подчинено примерно тем же законом, что и в стандартной модификации ННМ-Т. Однако при достаточно больших временах задержки на характере временного распределения плотности тепловых нейтронов скважинные условия почти не сказываются. Импульсы источника повторяются через небольшое время (обычно 10-400 раз в 1 с) и при ИННК регистрируется интенсивность тепловых нейтронов для некоторого значения времени задержки, усредненная по большому числу импульсов источника.

 

4. Аппаратура и методика работ

 

В ИННК применяется измерительная скважинная установка, состоящая из импульсного скважинного генератора нейтронов и расположенного на некотором фиксированном расстоянии (длина зонда) от него детектора нейтронов. Модель скважинного прибора для работ методом ИННК представлена на рисунке.

 

Принцип работы скважинного генератора нейтронов следующий. Мишень, представляющая собой один из легких элементов( дейтерий, тритий, бериллий, литий и др.),бомбардируется потоком ускоренных заряженных реакций 2D( d,n) 3He и 3T(d,n) 4He бомбардировки потоком ионов дейтерия (дейтонов) или трития.

Основными конструктивными узлами генератора нейтронов являются ускорительная трубка и источни