Междумолекулярные и межатомные связи между элементарными частицами
Контрольная работа - Физика
Другие контрольные работы по предмету Физика
Содержание
Вступление
. Межмолекулярные силы взаимодействия и их природа
. Расчётная часть
Вывод
Литература
Вступление
Контактное взаимодействие кристаллических тел между собой ,а также с газами и жидкостями также сопровождается появлением междумолекулярных или межатомных связей между элементарными частицами контактирующих веществ.
Строение вещества определяется не только взаимным расположением атомов в химических частицах, но и расположением этих химических частиц в пространстве. Наиболее упорядочено размещение атомов, молекул и ионов в кристаллах (от греческого "кристаллос" - лед), где химические частицы (атомы, молекулы, ионы) расположены в определенном порядке, образуя в пространстве кристаллическую решетку. При определенных условиях образования они могут иметь естественную форму правильных симметричных многогранников. Кристаллическое состояние характеризуется наличием дальнего порядка в расположении частиц и симметрией кристаллической решетки.
1. Межмолекулярные силы взаимодействия и их природа
Межмолекулярное взаимодействие - взаимодействие между электрически нейтральными молекулами или атомами; определяет существование жидкостей и молекулярных кристаллов, отличие реальных газов от идеальных и проявляется в разнообразных физических явлениях. Межмолекулярное взаимодействие зависит от расстояния r между молекулами и, как правило, описывается потенциальной энергией взаимодействия U(r) (потенциалом М. в.), так как именно средняя потенциальная энергия взаимодействия определяет состояние и многие свойства вещества.
Впервые М. в. принял во внимание Я. Д. Ван дер Ваальс (1873) для объяснения свойств реальных газов и жидкостей. Ван дер Ваальс предположил, что на малых расстояниях r между молекулами действуют силы отталкивания, которые с увеличением расстояния сменяются силами притяжения. На основе этих представлений, даже не рассматривая количественной зависимости Межмолекулярных взаимодействий от расстояния, он получил так называемое Ван-дер-Ваальса уравнение состояния реального газа.
Ван-дер-Ваальсовы силы - силы межмолекулярного взаимодействия с энергией 0,8 - 8,16 кДж/моль. Этим термином первоначально обозначались все такие силы, но сейчас он обычно применяется к силам, возникающим при поляризации молекул и образовании диполей.
К Ван-дер-Ваальсовым силам относятся взаимодействия между диполями (постоянными и индуцированными). Название связано с тем фактом, что эти силы являются причиной поправки на внутреннее давление в уравнении состояния реального газа Ван-дер-Ваальса. Эти взаимодействия в основном определяют силы, ответственные за формирование пространственной структуры биологических макромолекул. Существует три типа Ван-дер-Ваальсовых сил:
.Ориентационные силы,
.Дисперсионные (лондоновские) силы,
.Индукционные силы.
До сих пор многие авторы исходят из предположения, что Ван-дер-Ваальсовые силы определяют межслоевое взаимодействие в слоистых кристаллах, что противоречит экспериментальным данным: масштабу анизотропии температуры Дебая и, соответственно, масштабу анизотропии решёточного отражения. Исходя из данного ошибочного предположения построены многие двумерные модели, "описывающие" свойства, в частности графита и нитрида бора.
Проявления в природе:
Сцепление частиц малых астероидов, кольца Сатурна;
Способность гекконов ходить по абсолютно гладким поверхностям, например стеклу
Уравнение состояния газа Ван-дер-Ваальса - уравнение, связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса.
Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давлениях и высоких температурах, в других условиях её соответствие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твёрдое состояние, а идеальные - не могут.
Для более точного описания поведения реальных газов при низких температурах была создана модель газа Ван-дер-Ваальса, учитывающая силы межмолекулярного взаимодействия. В этой модели внутренняя энергия U становится функцией не только температуры, но и объёма.
Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой.
Для одного моля газа Ван-дер-Ваальса оно имеет вид:
где
*p - давление,
*V - объём,
*T - абсолютная температура,
*R - универсальная газовая постоянная.
Видно, что это уравнение фактически является уравнением состояния идеального газа с двумя поправками. Поправка a учитывает силы притяжения между молекулами (давление на стенку уменьшается, т.к. есть силы, втягивающие молекулы приграничного слоя внутрь), поправка b - силы отталкивания (из общего объёма вычитаем объём, занимаемый молекулами).
Для ? молей газа Ван-дер-Ваальса уравнение состояния выглядит так:
Внутренняя энергия газа Ван-дер-Ваальса:
Потенциальная энергия межмолекулярных сил взаимодействия вычисляется как работа, которую совершают эти силы, при разведении молекул на бесконечность:
Внутренняя энергия газа Ван-дер-Ваальса складывается из его кинетической энергии (энергии теплового движения молекул) и только что нами посчитанной потенциальной. Так, для одного моль газа: