Математические модели физико-химических процессов

Контрольная работа - Математика и статистика

Другие контрольные работы по предмету Математика и статистика

 

 

Рис. 4. Совместная характеристика насоса и трубопровода

 

14.При каком соединении насосов (последовательном или параллельном) увеличиваются производительность, напор?

 

Часто требуется в сети установить не один насос, а целую систему насосов, которая обеспечит нужный напор и подачу. Такой системой является насосная станция. Регулирование подачи и напора насосной станции имеет более широкие возможности за счет соединения насосов параллельно и (или) последовательно.

При параллельном соединении насосов суммируется подача, при последовательном - напор. Если на насосной станции необходимо получить нужные рабочие параметры (Q - Н), то всегда существует возможность путем комбинации набора ряда насосов с ограниченной подачей соединить их параллельно, чтобы получить большую подачу и последовательно - чтобы получить больший напор. Для получения необходимого напора на автономных насосных станциях последовательное соединение применяют реже (бустерные или напорные насосы). На практике повышение напора осуществляется через отдельные каскады насосных станций.

Следует обратить внимание, что последовательное и параллельное соединение центробежных насосов, имеющих пологую напорную характеристику, не дает, как правило, возможности получения двойного значения напора и подачи. Это происходит по следующим причинам:

при параллельном соединении не удается плавно соединить потоки из-за дополнительных изгибов и сужений напорных трубопроводов, необходимых для удобства монтажа. Это приводит к дополнительному сопротивлению сети и, соответственно, к смещению рабочей точки напорной характеристики в область меньших подач обоих насосов;

при последовательном соединении насосов уменьшение суммарного напора происходит из-за потерь на промежуточном участке между насосами, вызванных наличием дополнительной арматуры.

При последовательном соединении следует обращать внимание на обеспечение необходимых условий всасывания на входе во второй насос.

 

15.Перечислить и сравнить методы очистки газов от пыли. От каких факторов зависит выбор аппарата для очистки газа от пыли

 

Методы очистки по их основному принципу можно разделить на механическую очистку, электростатическую очистку и очистку с помощью звуковой и ультразвуковой коагуляции.

Механическая очистка газов включает сухие и мокрые методы. К сухим методам относятся:

) гравитационное осаждение;

) инерционное и центробежное пылеулавливание;

) фильтрация.

Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах. Гравитационное осаждение действенно лишь для крупных частиц диаметром более 50-100 мкм, причем степень очистки составляет не .выше 40-50%. Метод пригоден лишь для предварительной, грубой очистки газов

Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи). Степень очистки в зависимости от дисперсности частиц составляет 20-70%. Инерционный метод можно применять лишь для грубой очистки газа. Помимо малой эффективности недостаток этого метода - быстрое истирание или забивание щелей.

Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Степень очистки от пыли зависит от размеров частиц. Для циклонов высокой производительности, в частности батарейных циклонов (производительностью более 20000 м3/ч), степень очистки составляет около 90% при диаметре частиц d>30 мкм. Для частиц с d =5ё30 мкм степень очистки снижается до 80%, а при d=2ё5 мкм она составляет менее 40%

Фильтрация основана на прохождении очищаемого газа через различные фильтрующие ткани (хлопок, шерсть, химические волокна, стекловолокно и др.) или через другие фильтрующие материалы (керамика, металлокерамика, пористые перегородки из пластмассы и др.). Наиболее часто для фильтрации применяют специально изготовленные волокнистые материалы - стекловолокно, шерсть или хлопок с асбестом, асбоцеллюлозу. В зависимости от фильтрующего материала различают тканевые фильтры (в том числе рукавные), волокнистые, из зернистых материалов (керамика, металлокерамика, пористые пластмассы) Фильтрация- весьма распространенный прием тонкой очистки газов. Ее преимущества- сравнительная низкая стоимость оборудования (за исключением металлокерамических фильтров) и высокая эффективность тонкой очистки. Недостатки фильтрации высокое гидравлическое сопротивление и быстрое забивание фильтрующего материала пылью.

Мокрая очистка газов от аэрозолей основана на промывке газа жидкостью (обычной водой) при возможно более развитой поверхности контакта жидкости с частицами аэрозоля и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Этот универсальный метод очистки газов от частиц пыли, дыма и тумана любых размеров является наиболее распространенным приемом заключительной