Массообменные процессы

Контрольная работа - Разное

Другие контрольные работы по предмету Разное

?исят от соотношения рабочих и равновесных концентраций.

Концентрации участвующих в массообменных процессах фаз могут иметь различную размерность (кг/кг, кмоль/м3 и т.п.). Обычно состав фаз выражают в массовых или молярных долях, относительных или объемных концентрациях.

 

№КонцентрацияОбозначение концентрации компонента Ав жидкой фазев газовой (паровой) фазе1Мольная доля, кмоль А/кмоль(А+В)ху2Массовая доля, кг А/кг (А+В)ху3Относительная мольная концентрация (доля), кмоль А/кмольВХУ4Относительная массовая концентрация (доля), кг А/кг ВХУ5Объемная мольная концентрация,кмоль А/м3 (А+В)СхСу6Объемная массовая концентрация, кг А/м3 (А+В)СхСу

Связь между составом фаз при равновесии:

 

у* = f(х)

 

где у* - равновесная относительная мольная доля целевого компонента в газовой (паровой) фазе

График этой зависимости - линия равновесия.

 

у* = mрх, где mр= у*/х - коэффициент распределения

 

Коэффициент распределения - отношение составов фаз при равновесии. Коэффициент распределения -tg?- угла наклона линии равновесия tg?= mр

Материальные балансы массообменных процессов зависят от способа их проведения. Различают однократное, непрерывное и ступенчатое взаимодействие фаз.

В массообменных аппаратах непрерывного действия процесс может происходить при непрерывном контакте фаз (например, в абсорбционных аппаратах пленочного типа, представляющих собой, по существу, кожухотрубчатый теплообменник, по внутренним поверхностям трубок которого течет пленка жидкости, а навстречу этой жидкости движется газ). При этом концентрации распределяемого вещества в фазах изменяются монотонно.

 

Рис.1. К составлению материального баланса при непрерывном контакте фаз в условиях противотока (а) и прямотока (б)

 

При непрерывном противотоке, наиболее часто используемом в технике (рис.1, а), материальный баланс для произвольного сечения аппарата при бесконечно малом пути выражается следующими соотношениями:

ун> ук - мольная доля компонента в газовой фазе

хк> хн - мольная доля компонента в жидкой фазе

М г = G(ун- ук) - мольный расход компонента, перешедшего из газовой фазы

М ж = L(хк- хн) - мольный расход компонента, перешедшего в жидкую фазу.

Поскольку один и тот же компонент переходит из газовой фазы в жидкую, то М г = М ж

(ун- ук) = L(хк- хн) (7.8)

 

Для произвольного сечения аппарата, в котором текущие составы целевого компонента равны Х и У, уравнение материального баланса для верхней части аппарата:

(ун- у) = L(хк- х)

 

При малом изменении величин G и L по высоте аппарата

 

у= ун -(L/ G) (хк- хн) (7.9)

 

Соотношение называют уравнением рабочей линии (уравнением линии рабочих концентраций) непрерывного противоточного массообменного процесса. Оно выражает связь составов взаимодействующих фаз в произвольном сечении аппарата. При L/ G = соnst. рабочая линия прямая. Если L/G ? соnst., то рабочая линия отклоняется от прямой.

В потоке идут два вида массопереноса - молекулярный и конвективный.

Молекулярная диффузия - переход распределяемого вещества в неподвижной среде из внутренних слоев данной (первой) фазы к поверхности раздела фаз и, пройдя ее, распределение по всему объему другой фазы, находящейся в контакте с первой. Она является следствием теплового движения молекул (ионов, атомов), которому оказывают сопротивление силы внутреннего трения.

Молекулярная диффузия описывается первым законом Фика:

dМ= -DdFd?дс /дп

 

Для всей поверхности F диффузии первый закон Фика выразится как

 

М =-DF?дс /дп

 

где D-коэффициент молекулярной диффузии; F - поверхность, нормальная к направлению диффузии; дс/дп- градиент концентраций вещества на единицу длины пути п диффундирующего вещества; знак минус связан с уменьшением градиента концентраций дс/дп по длине пути диффузии.

Коэффициент молекулярной диффузии D зависит от природы диффундирующего вещества. Поэтому он не связан с динамикой процесса и характеризует способность вещества проникать в какую-либо среду. Найдем его размерность из выражения: [D]= [м2/с ], откуда следует, что коэффициент молекулярной диффузии D показывает, какое количество вещества диффундирует в единицу времени через единицу поверхности при градиенте концентрации, равном единице. Коэффициент молекулярной диффузии D является аналогом коэффициента температуропроводности ?.

Значения D находят по справочникам или рассчитывают. Коэффициент диффузии зависит от температуры (увеличивается с повышением температуры) и для газов - от давления (с увеличением давления D г снижается).

Для газовой среды D г ? 1 см2/с, для конденсированной (жидкой) средыж ? 1 с/сут, откуда следует, что молекулярная диффузия в жидкостях, а тем более в твердых телах - процесс очень медленный.

Конвективный перенос (конвективная диффузия) характеризуется перемещением (переносом) вещества движущимися частицами потока в условиях турбулентного движения фаз. Конвективный перенос вещества под действием турбулентных пульсаций иногда называют турбулентной диффузией.

Конвективный массоперенос - процесс переноса вещества при движении жидкости или газа. Этот процесс происходит как бы механически - макрообъемными частицами жидкостного или газового потока.

Массоотдачу, так же как и конвекцию, подразделяют на естественную и вынужденную, или принудительную. При естественной массоотдаче движение жидкости происходит вследствие разности плотносте?/p>