Актуальні проблеми у сфері екологічної безпеки
Информация - Экология
Другие материалы по предмету Экология
х наноструктур, щодо яких можуть застосовуватися усі наближення з фізики твердого тіла. Другий напрям має зворотний підхід, коли від макроскопічного обєкта переходять до нанокластерів за рахунок дроблення або наноструктурування.
Застосування термодинамічного підходу до вивчення властивостей нанокластерів дозволяє встановити закономірності зміни їх властивостей у процесі фазового переходу. Крім того, необхідно оцінити можливість синергетичного впливу наночастинок із токсичними забруднювачами, що також може впливати на біообекти.
Дослідження фундаментальних властивостей нанообектів необхідно проводити з урахуванням спрямованості протікання електромагнітних процесів, що мають місце в електрично-активних сполучених структурах, до яких відносяться і наночастинки.
Спільний аналіз електрофізичних, фізико-хімічних і хімічних процесів, що протікають у водному середовищі та біологічних рідинах у присутності наночастинок, дозволить виявити механізм їхньої дії на біообекти і оцінити можливості проявлення нанотоксичного впливу на організм.
Класифікація наночастинок може бути побудована, по-перше, на характеристиці їхньої форми. У цьому випадку розрізняють точечні наночастинки (з розміром менше 100нм у будь-якому вимірі), лінійні (протяжливі) обєкти, такі як нанотрубки вуглецю, нановолокна, нанонитки, нанофіламенти, що характеризуються одним протяжним макроскопічним виміром (довжиною), двовимірні обєкти (плівки нанометрової товщини) і, нарешті, тривимірні обєкти з тонкою (фрактальною) структурою в нанометровому діапазоні (нанопен), нанокомпозити та ін. Другий тип класифікації заснований на хімічному складі й включає наночастинки вуглецю (фулерени, нанотрубки, графен), наночастинки елементарних (простих) речовин, бінарних сполук (окислів, сульфідів, нітридів та ін.), складних (потрійних і більше) хімічних сполук, наночастинки органічних полімерів і біологічних макромолекул. Третій тип класифікації заснований на підході отримання речовин у наноформі. Це, по-перше, "спадний" шлях, тобто отримання наночастинок шляхом процесу надтонкого розмільчіння речовини у формі суцільних фаз або макродисперсій. По-друге, це "висхідний" шлях, що полягає у молекулярній конденсації наночастинок із розчинів або з газової фази, насиченої парами речовин під впливом електричного розряду, лазерного випромінювання, високотемпературної плазми та ін.
Так як наноматеріали можуть володіти зовсім іншими фізико-хімічними властивостями та біологічною (у тому числі токсичним) дією, ніж речовини у звичайному фізико-хімічному стані, тому вони повинні у всіх випадках бути віднесені до нових видів матеріалів і продукції, характеристика потенційного ризику яких для здоровя людини і стану середовища перебування у всіх випадках є обовязковою.
При оцінці безпеки наноматеріалів у першу чергу варто враховувати їхній вплив на такі найважливіші біологічні характеристики, як проникність біомембран, генотоксичність, активність окислювально-відновних процесів, включаючи перекісне окислювання ліпідів, біотрансформація і елімінація з організму.
Існуюча сьогодні методологія оцінки ризику ґрунтується на повній токсикологічній оцінці кожної конкретної речовини, визначенні залежності "доза-ефект", даних про зміст речовини в обєктах навколишнього середовища і харчових продуктів, розрахунку навантаження на населення, що дозволяє розрахувати наявні ризики. Однак для наноматеріалів у звязку з особливостями їхньої будови і поведінки дана методологія може бути застосована обмежено (або незастосовна) у звязку з наступними причинами:
- токсичність наночастинок не може бути виведена в порівнянні з аналогами в макродисперсній формі або у вигляді суцільних фаз, тому що токсикологічні властивості наноматеріалів є результатом не тільки їхнього хімічного складу, але й розмаїтості їхніх інших особливостей, таких як поверхневі характеристики, розмір, форма, сполука, хімічна реактивність та ін;
- наявні токсикологічні методології засновані на визначенні токсичності речовини щодо масової концентрації, що не прийнятно для наноматеріалів, для яких основними визначальними властивостями можуть бути величина площі поверхні або наночастинки;
- відсутні стандартизовані індикатори нанотоксичності, які повинні обовязково враховувати внесок таких характеристик, як поверхневі властивості, розмір, форма, сполука, хімічна реактивність складових їхніх часток;
- відсутні надійні дані про органи-мішені дії конкретних наноматеріалів;
- методи виявлення, ідентифікації й кількісного визначення наноматеріалів у обєктах навколишнього середовища, харчових продуктах і біосередовищах, які могли б вірогідно відрізнити їх від хімічних аналогів у макродисперсній формі, недостатньо розроблені;
- відсутні або недоступні нові бази даних і математичні моделі, що опираються на досягнення біоінформатики і на експериментальні дані по токсичності окремих наноматеріалів.
Незважаючи на те, що наноматеріали використаються досить тривалий час, жоден вид не був вивчений у повному обємі безпеки. Фактично, безпеки наноматеріалів не дозволяють точно оцінити їхні потенційні ризики.
Одним з основних питань є наявність високочутливих методів виявлення, ідентифікації і кількісного визначення наноматеріалів у обєктах навколишнього середовища, харчових продуктах і біологічних середовищах. При цьому повинні викор