Магнитная обработка промышленных вод

Информация - Геодезия и Геология

Другие материалы по предмету Геодезия и Геология

а суспензии и отложений, извлеченных в нашем крупномасштабном эксперименте. Масса воды, текущей через каждый электрический контур была 2500 т. Среднее значение сухого остатка, остающегося после испарения 1 литра используемой воды было 0.35 г. Это дает больше чем 800 кг суспензии, которая перекачивалась каждым контуром в течение четырех месяцев. Содержание кремнезема в воде было 10 мг/л, в сумме это 25 кг кремнезема. Формирование углекислых отложений при умеренных температурах (до 300C) замедляло процесс, поскольку всего лишь 190 г кальцитовых отложений было извлечено из контура после четырех месяцев эксплуатации. Это означает, что для защиты от накипеобразования достаточно активизировать лишь малую часть кремнезема в воде.

В резюме мы представили результаты крупномасштабного эксперимента и индустриального применения магнитогидродинамической обработки воды. Благодаря значительной продолжительности и надлежащей реализации обработки обнаружился несомненный противонакипный эффект. Аморфный мягкий депозит, извлеченный из MWT был идентифицирован как обусловленный гидрозолем кремнезема. Оказалось, что кристаллизация кальцита была блокирована из-за сильной адсорбции кальция и других ионов металла на магнитным способом активизированном кремнеземе. В результате аморфные Ca-Mg гидрозоли кремнезема образовались в процессах адсорбции и коагуляции. Мы предполагаем, что коллоидный кремнезем был активизирован посредством силы Лоренца, индуцирующей конденсацию слоя Штерна, в расчете диффузионного слоя [16].

Чтобы предотвращать образование накипи в системе было необходимо активизировать только малую фракцию находящегося в воде кремнезема.

Мы хотели бы выразить нашу искреннюю благодарность команде Energopomiar химическому отделу в Gliwice, Польша за выполнение химических исследований и за плодотворное сотрудничество. Благодарим за помощь и доброе отношение директора и технического руководителя Laziska электростанции. Мы очень благодарны нашим коллегам, J. Sciesinski и A. Bajorek за измерения IR поглощения и рентгеновские исследования образцов. Благодарим за дополнительные измерения и обсуждения результатов с научными коллективами профессора М. Handke и профессора С. Hodorowicz.

Специальная благодарность профессору J.M.D. Coey за помощь при работе с текстом и обсуждения.

References

 

1. Th. Vermeiren, Corrosion Technol. 5, 215 (1958).

2. V.I. Klassen, Dokl. Akad. Nauk SU 166, 1383 (1966); Omagnicivanije vodnych sistem (in Russian) (Ed. Chimija, Moskva, 1978); in Developments in Mineral Processing (Elsevier, N.Y., 1981), Part B, Mineral Processing, p. 1077.

3. K.J. Kronenberg, IEEE Trans. Magn. 21, 2059 (1985).

4. E.F. Tebenihin, B.T. Gusev, Obrabotka vody magnitnym polem v teploenergetike (Ed. Energija, 1970).

5. N.N. Kruglitskij, G.A. Kataev, B.P. Zhantalay, K.A. Rubezhanskij, A.A. Kolomec, Kolloid. Zh. 47, 493 (1985).

6. S.A. Parsons, B.L. Wang, S. Udol, S.J. Judd, T. Stephenson, Trans. IChemE (part B) 74, 98 (1997).

7. I.J. Lin, J. Yotvat, J. Magn. Magn. Mater. 83, 525 (1990).

8. V.G. Levic, Uspekhi Fiz. Nauk 88, 787 (1966) (in Russian).

9. O.T. Krylov, I.K. Vikulova, V.V. Eletsky, N.A. Rozno, V.I. Klassen, Coll. J. USRR 47, 31 (1985).

10. K. Higashitani, K. Okuhara, S. Hatade, J. Colloid Interface Sci. 152, 125 (1992).

11. K. Higashitani, H. Iseri, K. Okuhara, A. Kage, S. Hatade, J. Colloid Interface Sci. 172, 383 (1995).

12. K. Higashitani, J. Oshitani, J. Colloid Interface Sci. 204, 363 (1998).

13. J. Oshitani, R. Uehara, K. Higshitani, J. Colloid Interface Sci. 209, 374 (1999).

14. Anti-scale Magnetic Treatment and Physical Conditioning, Proc. MAG 3 (Ed. S. Parsons, Cran_eld University, 1999), ISBN - 1 86194 010 6.

15. J.M.D. Coey, S. Cass, J. Magn. Magn. Mater. 209, 71 (2000).

16. L.C. Lipus, J. Krope, L. Crepinsek, J. Colloid Interface Sci. 236, 60 (2001).

17. V.C. Farmer, The Infrared Spectra of Minerals (Mineralogical Society Monograph 4, London, 1974).

18. W. Eitel, The Physical Chemistry of the Silicates (The University of Chicago Press, 1954).

19. A. Szkatul/a et al., Magnetohydrodynamic method of water treatment, European Patent No. 0241 090 B1, Cl. C02F 1/48.

20. A. Szkatul/a et al., in preparation.

21. M. Kitamura, J. Colloid Interface Sci. 236, 318 (2001).

22. M. Colic, D. Morse, Langumir 14, 783 (1998).

23. R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979).

24. L.A. Kulskii, Theoretical Bases and Technology of Water Conditioning (Ed. Naukova Dumka, Kiev, 1980) (in Russian).

25. M. Smoluchowski, Phys. Zeit. XVII, 557{571; 587{599 (1916).

26. N.I. Gamayunov, Kolloid. Zh. 56, 290 (1994); English Translation: Colloid. J. 56, 234 (1994).

27. R.J. Hunter, Introduction to Modern Colloidal Science (Oxford Science Publications, New York, 1996).

28. Q. Du, E. Freysz, Y.R. Shen, Phys. Rev. Lett. 72, 238 (1994).

29. V.V. Yaminsky, B.W. Ninham, R.M. Pashley, Langumir 14, 3223 (1998).