Логические сети

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование

Содержание

 

Введение

.Логические сети

1.1Определение и реализация булевых функций

1.2Схемы функциональных элементов

.3Мультиплексоры

.4Программируемые логические матрицы

.Практическая часть

Заключение

Список литературы

 

Введение

 

Логические сети - этот обобщенное название технологий, реализующих кодовые преобразования. Например, мультиплексоры и программируемые логические матрицы.

Мультиплексоры могут использоваться в делителях частоты, триггерных устройствах, сдвигающих устройствах и др. Их часто используют для преобразования параллельного двоичного кода в последовательный. Для такого преобразования достаточно подать на информационные входы мультиплексора параллельный двоичный код, а сигналы на адресные входы подавать в такой последовательности, чтобы к выходу поочередно подключались входы, начиная с первого и заканчивая последним.

В микропроцессорной технике программируемые логические матрицы (ПЛМ) наиболее широко используются для реализации микропрограммных устройств управления. По способу программирования различают ПЛМ программируемые в процессе изготовления и программируемые пользователем.

В ПЛМ первого типа информация заносится в матрицы путем подключения элементов к шинам благодаря металлизации нужных участков схемы, что выполняется с помощью фотошаблона (маски). Никаких изменений пользователь в этом случае в ходе эксплуатации ПЛМ сделать не может. Подобным способом изготовляются ПЛМ, встраиваемые в МП БИС, а также автономные ПЛМ стандартного микропрограммного обеспечения.

ПЛМ второго типа поставляются незапрограммированными, и их функциональная ориентация производится пользователем с помощью специального оборудования, причем существуют ПЛМ с однократной записью информации и репрограммируемые ПЛМ, в которых записанная информация может быть стерта ультрафиолетовым или рентгеновским лучом.

 

1. Логические сети

 

.1 Определение и реализация булевых функций

 

Мультиграф , в котором выделено k вершин (полюсов), называется k-полюсной сетью. Сеть G, задаваемая неориентированным мультиграфом с k полюсами, в которой каждое ребро помечено буквой из алфавита называется k-полюсной контактной схемой.

На рисунке 1 приведен пример контактной схемы с двумя полюсами а1 и а6.

 

Рисунок 1

 

(k+1) - полюсная схема, в которой один полюс выделен (он называется входным), а остальные полюса (выходные) равноправны, называется (1,k)-полюсником. Таким образом, если в приведенной на рисунке 1 двухполюсной схеме рассматривать, например, полюс а1 как входной, а полюс а6, как выходной, то получаем (1, 1)-полюсник.

Ребра контактной схемы называются контактами. Контакт, соответствующий логической переменной называется замыкающим и обозначается через . Замыкающий контакт пропускает ток при Контакт, соответствующий литере называется размыкающим и обозначается как . Через него ток проходит при Таким образом, значение 1 интерпретируется как состояние переключателя ток проходит, а 0 - ток не проходит. Функции соответствует последовательное соединение контактов , а функции - параллельное соединение контактов

Нетрудно заметить, что схеме, показанной на рисунке 1, соответствует электрическая схема, приведенная на рисунке 2, а также схема контактов, изображенная на рисунке 3. На последнем рисунке показаны контакты, зависящие от значений переменных а также схема соединений контактов.

 

Рисунок 2

 

Рисунок 3

 

Пусть a, b - полюса контактной схемы , - некоторая цепь из а в b, - конъюнкция литер, приписанных ребрам цепи . Функция , определяемая формулой в которой дизъюнкция берется по всем простым цепям схемы, соединяющим полюса a и b, называется функцией проводимости между полюсами a и b схем Говорят, что функция реализуется (1, k)-полюсником, если существует такой выходной полюс что где а - входной полюс. (1,1)-полюсники называются эквивалентными, если они реализуют одну и ту же булеву функцию. Сложностью (1,1)-полюсника называется число контактов. (1,1)-полюсник, имеющий наименьшую сложность среди эквивалентных ему схем, называется минимальным. Сложность минимального (1,1)-полюсника, реализующего функцию называется сложностью функции в классе (1,1)-полюсников и обозначается через .

Заметим, что задача нахождения минимального (1,1)-полюсника среди эквивалентных данному (1,1)-полюснику равносильна нахождению среди функций, реализуемых схемой функции, имеющей наименьшее число вхождений переменных. Действительно, функцию, реализуемую (1,1)-полюсником, нетрудно представить в виде формулы, которая строится из литер в соответствии с контактной схемой и имеет ровно столько вхождений переменных, сколько контактов имеет схема. Например, изображенной на рисунке 3 схеме соответствует булева функция:

 

(1)

математический метод логический матрица задача

Таким образом, задача нахождения минимального (1,1)-полюсника сводится к минимизации соответствующей булевой функции.

Эффективное уменьшение числа контактов достигается с помощью нахождения минимальной ДНФ булевой функции.

Найдем минимальную ДНФ функции (1), реализуемой схемой на рисунке 2. Придавая логическим переменным все возможные значения, но схеме или формуле (1) получаем таблицу истинности:

 

00001111001100110101010110101001

С помощью таблицы истинности определим совершенную ДНФ:

Используя один из методов нахождения