Линейное программирование: постановка задач и графическое решение
Информация - Математика и статистика
Другие материалы по предмету Математика и статистика
неограниченной снизу (рис. 2.2, а), ограниченной снизу и неограниченной сверху (рис. 2.2, б), либо ограниченной как снизу, так и сверху (рис. 2.2, в).
2.1. Примеры задач, решаемых графическим методом.
Решим графическим методом задачи использования сырья и составления рациона.
Задача использования сырья. Для изготовления двух видов продукции Р1 и Р2 используют три вида сырья: S1, S2, S3. Запасы сырья, количество единиц сырья, затрачиваемых на изготовление единицы продукци, а так же величина прибыли, получаемая от реализации единицы продукции, приведены в таблице 2.1.
Таблица 2.1.
Вид сырьяЗапас сырьяКоличество единиц сырья, идущих на изготовление единицы продукцииР1Р2S12025S24085S33056Прибыль от единицы продукции, руб.5040
Необходимо составить такой план выпуска продукции, чтобы при ее реализации получить максимальную прибыль.
Решение.
Обозначим через х1 количество единиц продукции Р1, а через х2 количество единиц продукции Р2. Тогда, учитывая количество единиц сырья, расходуемое на изготовление продукции, а так же запасы сырья, получим систему ограничений:
2х1 + 5х2 20
8х1 + 5х2 40
5х1 + 6х2 30
которая показывает, что количество сырья, расходуемое на изготовление продукции, не может превысит имеющихся запасов. Если продукция Р1 не выпускается, то х1=0; в противном случае x1 0. То же самое получаем и для продукции Р2. Таким образом, на неизвестные х1 и х2 должно быть наложено ограничение неотрицательности: х1 0, х2 0.
Конечную цель решаемой задачи получение максимальной прибылипри реализации продукции выразим как функцию двух переменных х1 и х2. Реализация х1 единиц продукции Р1 и х2 единиц продукции Р2 дает соответственно 50х1 и 40х2 руб. прибыли, суммарная прибыль Z = 50х1 + 40х2 (руб.)
Условиями не оговорена неделимость единица продукции, поэтому х1 и х2 (план выпуска продукции) могут быть и дробными числами.
Требуется найти такие х1 и х2, при которых функция Z достинает максимум, т.е. найти максимальное значение линейной функции Z = 50х1 + 40х2 при ограничениях
2х1 + 5х2 20
8х1 + 5х2 40
5х1 + 6х2 30
х1 0, х2 0.
Построим многоугольник решений (рис. 2.3).
Для этого в системе координат х1Ох2 на плоскости на плоскости изобразим граничные прямые
2х1 + 5х2 = 20 (L1)
8х1 + 5х2 = 40 (L2)
5х1 + 6х2 = 30 (L3)
х1 = 0, х2 = 0.
Взяв какую-нибудь точку, например, начало координат, установим, какую полуплоскость определяет соответствующее неравенство (эти полуплоскости на рис. 2.3 показаны стрелками). Многоугольником решений данной задачи является ограниченный пятиугольник ОАВСD.
Для построения прямой 50х1 + 40х2 = 0 строим радиус-вектор N = (50;40) = 10(5;4) и через точку O проводим прямую, перпендикулярную ему. Построенную прямую Z = 0 перемещаем параллельно самой себе в направлении вектора N. Из риc. 2.3 следует, что опорной по отношению к многоугольнику решений эта прямая становится в точке С, где функция Z принимает максимальное значение. Точка С лежит на пересечении прямых L1 и L2. Для определения ее координат решим систему уравнений
8x1 + 5х2 = 40
5х1 + 6х2 = 30
Оптимальный план задачи: х1 = 90/23 = 3,9; х2 = 40/23 = 1,7. Подставляя значения х1 и х2 в линейную функцию, получаем Zmax = 50 3,9 + 40 1,7 = 260,3
Таким образом, для того чтобы получить максимальную прибыль в размере 260,3 руб., необходимо запланировать производство 3,9 ед. продукции Р1 и 1,7 ед. продукции Р2.
Задача составления рациона. При откорме каждое животное ежедневно должно получать не менее 9 ед. питательного вещества S1, не менее 8 ед. вещества S2 и не менее 12 ед. вещества S3. Для составления рациона используют два вида корма. Содержание количества елиниц питательных веществ в 1 кг каждого вида корма и стоимость 1 кг корма приведены в таблице 2.2.
Таблица 2.2.
Питательные веществаКоличество единиц питательных веществ
в 1 кг корма. Корм 1Корм 2S131S212S316Стоимость 1 кг корма, коп.46
Необходимо составить дневной рацион нужной питательности, причем затраты на него должны быть минимальными.
Решение.
Для составления математической модели обозначим через х1 и х2 соответственно количество килограммов корма 1 и 2 в дневном рационе. Принимая во внимание значения, приведенные в таблице 2.2, и условие, что дневной рацион удовлетворяет требуемой питательности только в случае, если количество единиц питательных веществ не меньше предусмотренного, получаем систему ограничений
3х1 + х2 9
х1 + 2х2 8
х1 + 6х2 12
х1 0, х2 0.
Если корм 1 не используется в рационе, то х1=0; в противном случае x1 0. Аналогично имеем х2 0. То есть должно выполняться условие неотрицательности переменных: х1 0, х2 0.
Цель данной задачи добиться минимальных затрат на дневной рацион, поэтому общую стоимость рациона можно выразить в виде линейной функции Z = 4х1 + 6х2 (коп.)
Требуется найти такие х1 и х2, при которых функция Z принимает минимальное. Таким образом, необходимо найти минимальное значение линейной функции Z = 4х1 + 6х2 при ограничениях
3х1 + х2 9
х1 + 2х2 8
х1 + 6х2 12
х1 0, х2 0.
Построим многоугольник решений (рис. 2.4). Для этого в системе координат х1Ох2 на плоскости изобразим граничные прямые
3х1 + х2 = 9 (L1)
х1 + 2х2 = 8 (L2)
х1 + 6х2 = 12 (L3)
х1 = 0, х2 = 0.
Взяв какую-нибудь точку, например, начало координат, установим, какую полуплоскость определяет соотве?/p>