Лекции по физике за 3 семестр
Методическое пособие - Физика
Другие методички по предмету Физика
ваются фотоны, когда они выбивают электроны? Фотоны отличаются от пуль тем, что для них нет закона сохранения частиц: вот, родился фотон, он не сидел в атоме, как пуля в ружье, потом поглотился другим атомом и исчез.
Куда деваются электроны, когда их выбивают фотоны? Имеем кусок металла, светим на него из фонаря, из металла вылетают электроны, сколько их вылетает и до каких пор они будут вылетать? Когда какое-то количество электронов вылетело и ушло на бесконечность (если у нас один шар на свете и больше ничего нет), то, металл приобретёт положительный заряд, и, в конце концов, этот заряд станет настолько большим, что максимальной кинетической энергии, с которой вылетает электрон, не хватит, чтобы уйти на бесконечность. Что тогда будет происходить? Электрон вылетел и летит обратно. Это означает, что всякий кусок металла при освещении должен иметь некоторый положительный заряд, и он окружён облаком электронов, которые вылетают и затягиваются обратно.
2. Эффект Комптона
Это в своё время был решающий эксперимент, который должен был подтвердить вот эту корпускулярную теорию, что свет при взаимодействии с веществом проявляются корпускулярные свойства. Речь идёт о рассеивании света на электронах. Мы уже обсуждали рассеивание света (почему небо синее), электрон колеблется в поле падающей волны с частотой волны, излучает вторичные волны с той же частотой, и они представляют рассеянный свет. Это, кстати, взаимодействие света с веществом, оно должно подпадать вот под эту корпускулярную теорию. По корпускулярной теории рассеивание происходит иначе.
Мы имеем электрон, на электрон налетает фотон, обладающий определённой энергией и импульсом. Происходит столкновение, нельзя фотон уподоблять бильярдному шару, и электрон нельзя уподоблять шару, они как-то взаимодействуют и разлетаются. Мы имели неподвижный электрон и фотон, конечная ситуация: электрон вылетает из этой области взаимодействия и фотон, но поскольку электрон имеет какую-то энергию, то энергия фотона должна быть меньше исходной: . Значит, рассеянный фотон должен иметь частоту меньше, чем частота падающего света. Вот ситуация, которая в рамках волновой теории описывается, в рамках корпускулярной, и результаты не совпадают. Есть ситуации, которые одинаково описываются в обеих теориях, то есть, дают одинаковые результаты. Здесь результаты разные. Посмотрим теперь количественно.
Энергия до столкновения это энергия фотона и , , энергия покоя неподвижного электрона. Энергия после столкновения: энергия фотона , энергия электрона . Импульс в проекции на ось x до: , после: , на ось y до: 0, после: . Законы сохранения энергии и импульса нам дают три уравнения:
Вот, три этих уравнения описывают столкновение. Считаем известной начальную ситуацию, то есть, заданы величины и всё, неизвестные величины: , углы . У нас неизвестных пять штук, уравнений три, это означает, что мы не можем исход этого столкновения однозначно описать.1) Нас будет интересовать частота в виде функции от угла рассеивания .
От угла мы можем избавиться, возведя последние два уравнения в квадрат и сложив их: . Из наших уравнений, возведённых в квадрат
выразим , учитывая, что .
Это мы нашли импульс рассеянного фотона, выраженный через импульс налетающего фотона и угол рассеивания фотона.
И здесь сразу можно усмотреть, почему неправильная была предъявлена теория Почему небо синее?, вам на экзамене её приходилось отвечать, почему она, тем не менее, могла быть? По корпускулярной теории частота рассеянного света должна быть меньше частоты падающего, а по волновой они одинаковы. Видно, что, если , то, конечно, . Мораль такая: при не слишком больших импульсах фотона, а на языке волновой теории при не слишком больших частотах, действительно, классическая теория даёт правильные результаты, но при больших частотах должны наблюдаться отклонения. Так как импульс линеен по частоте, имеем:
Действительно, были проделаны эксперименты,1) и эта формула подтвердилась. Эффект Комптона подтвердил корпускулярные свойства света.
3. Давление света
В рамках корпускулярных представлений задача о давлении света элементарно решается, хотя из волновой теории следует, что свет должен оказывать давление при падении на поглощающий или отражающий экран.
Когда световая волна падает на поверхность металла, то напряжённость электрического поля вызывает ток с плотностью . На элемент объёма действует сила , где - это магнитная составляющая падающей волны. Действительно, эта сила направлена в сторону падения волны и давит на поверхность, можно рассчитать величину этого давления. Но эта же задача в рамках корпускулярных представлений решается просто элементарно.
Имеется мишень, поток частиц, которые застревают в этой мишени. Эти частицы несут с собой импульс, а сила это изменение импульса частиц, пересекающих данную площадку за единицу времени, это изменение импульса легко сосчитать.
Пусть у нас имеется поток света с интенсивностью , это энергия, падающая на единицу площади за единицу времени (вектор Пойнтинга). На площадку падают фотоны, их число за время можно найти, разделив падающую энергию за это же время на энергию одного фотона.
Изменение импульса за единицу времени это есть сила:
То есть давление света при полном поглощении это интен