Лекции по предмету статистика
Информация - Математика и статистика
Другие материалы по предмету Математика и статистика
?иница или серия участвует в отборе столько раз, сколько отбирают единиц или серий. При бесповторном отборе отобранная единица больше не участвует в отборе.
Случайность отбора обеспечивается следующими механизмами:
- путем жеребьевки;
- путем механической выборки (все единицы совокупности располагаются в определенном порядке, а затем в зависимости от численности выборки отбираются определенные единицы);
- с помощью таблицы случайных чисел.
В зависимости от процедуры отбора расчет предельной ошибки выборки имеет определенную модификацию.
Предельная ошибка выборкиДля среднейДля долиПовторный отбор
Бесповторный отбор
Примеры задач
Пример 1. Найти среднюю и с вероятностью 0,954 предельную ошибку среднего бала, если дисперсия успеваемости равна 0,56, а обследованию подвергнуто 100 студентов.
Что произойдет с ошибкой среднего балла, если обследовать 400 студентов? Ошибка уменьшится в два раза. Это значит, что ошибку 0,06 можно будет гарантировать с вероятностью 0,954.
Пример 2. Какую ошибку доли отобранных деталей можно ожидать с вероятностью 0,9, если дисперсия равна 0,09, а обследованию подвергнуто 400 деталей?
Численность выборки
Из формулы предельной ошибки выборки формула для расчета численности выборки:
Пример 3. Сколько изделий необходимо отобрать для исчисления процента бракованных с ошибкой не более 2 % при вероятности 0,954, если вариация изучаемого признака максимальная.
Пример 4. Какое количество станков надо обследовать, чтобы ошибка среднего срока службы не превышала 1 год с вероятностью 0,997, если дисперсия срока службы станка равна 25 годам.
Повторный групповой отбор
В зависимости от того, отбираются ли единицы или же группы, различают индивидуальный или групповой отбор. При повторном групповом отборе (повторный индивидуальный мы уже рассмотрели) предельная ошибка выборки равна:
Для среднейДля доли
Пример 5. По данным выборочного обследования средняя удойность коров на 400 обследованных фермах составила 2200 литров в год. Найти ошибку удойности с вероятностью 0,954, если коэффициент вариации удойности коров между фермами равен 10 %.
Пример 6. Сколько учебных групп необходимо обследовать, чтобы ошибка среднего балла успеваемости по интересующей нас дисциплине не превышала 0,2 с вероятностью 0,954, если дисперсия оценок между группами равна 0,1.
Многоступенчатый отбор
Ошибка многоступенчатого отбора в общем виде может быть представлена следующей формулой:
Для комбинационного отбора предельная ошибка выборки равна:
Пример 7. В результате комбинационной выборки оказалось, что средний процент выполнения норм выработки равен 135 %. Дисперсия признака между предприятиями равна 60, а в среднем для отдельных предприятий 400. Рассчитать ошибку среднего процента выполнения норм с вероятностью 0,954, если на первой ступени отобрано 100 предприятий, а на второй 1000 рабочих данной профессии.
Бесповторный отбор
При бесповторном отборе в формулу вносим коэффициент:
Соответствующим образом модифицируем формулу для численности (при бесповторном отборе):
Определение границ изменения генеральной средней
Пример 8. В результате выборочного наблюдения затраты времени на оформление финансовых документов мы поместили в таблицу.
Затраты времени20-2222-2424-2626-28ВсегоЧисло обследований6713312773400Определить границы затрат времени на оформление финансовых документов с вероятностью 0,997.
Интервал20-222167-2-13426822-2423133-1-13313324-262512700026-28277317373Сумма400-194474
Таким образом ,с вероятностью 0,997 можно утверждать, что время, затраченное на оформление одного финансового документа, равно