Лампы СВЧ диапазона
Контрольная работа - Компьютеры, программирование
Другие контрольные работы по предмету Компьютеры, программирование
Министерство образования и науки Российской федерации
Федеральное государственное автономное образовательное учреждение высшего профессионального образования Северо-Кавказский федеральный университет
Контрольная работа
по дисциплине: Приборы СВЧ и оптического диапазона
Тема: Лампы СВЧ диапазона
Выполнил:
студент 3 курса
группы ТКМБ-091
Чичулин С.В.
Принял: Жубреев С.В.
Ставрополь 2012
Содержание:
Введение
.Теоретическая часть
.1Лампа бегущей волны
.2Лампа обратной волны
.Расчетная часть
.1Расчет геометрии замедляющей системы
.2Расчет дисперсионной характеристики и сопротивления связи
.3Расчет геометрии и рабочих параметров вывода и ввода энергии
.4Расчет величины индуктивности фокусирующего магнитного поля
Заключение
Список используемых информационных источников
Введение
К лампам СВЧ диапазона можно отнести лампу бегущей волны и лампу обратной волны. Эти лампы относятся к электровакуумным приборам СВЧ диапазона. Эти лампы в основном применяются для усиления сигналов СВЧ.
.Теоретическая часть
1.1Лампа бегущей волны
лампа диапазон индуктивность магнитный
Лампа бегущей волны (ЛБВ) - электровакуумный прибор, в котором для генерирования и/или усиления электромагнитных колебаний СВЧ используется взаимодействие бегущей электромагнитной волны и электронного потока, движущихся в одном направлении.
Лампа бегущей волны была впервые создана Рудольфом Компфнером в 1943 году.
Лампы бегущей волны подразделяются на два класса: ЛБВ типа О и ЛБВ типа М.
В приборах типа О происходит преобразование кинетической энергии электронов в энергию СВЧ поля в результате торможения электронов этим полем. Магнитное поле в таких лампах направлено вдоль направления распространения пучка и служит лишь для фокусировки последнего.
В приборах типа М в энергию СВЧ поля переходит потенциальная энергия электронов, смещающихся в результате многократного торможения и разгона от катода к аноду. Средняя кинетическая энергия при этом остается постоянной. Магнитное поле в таких приборах направлено перпендикулярно направлению распространения пучка.
ЛВБ типа О
Принцип действия ламп бегущей волны (ЛБВ) основан на механизме длительного взаимодействия электронного потока с полем бегущей электромагнитной волны. На рисунке схематично представлено устройство ЛБВ. Электронная пушка формирует электронный пучок с определенным сечением и интенсивностью. Скорость электронов определяется ускоряющим напряжением. С помощью фокусирующей системы, создающей продольное магнитное поле, обеспечивается необходимое поперечное сечение пучка на всем пути вдоль замедляющей системы. В ЛБВ электронная пушка, спиральная замедляющая система и коллектор размещаются в металлостеклянном или металлическом баллоне, а фокусирующий соленоид располагается снаружи. Спираль крепится между диэлектрическими стержнями, которые должны обладать малыми потерями на СВЧ и хорошей теплопроводностью. Последнее требование важно для ламп средней и большой выходной мощности, когда спираль нагревается из-за оседания электронов и нужно отводить это тепло, чтобы не было прогорания спирали.
На входе и выходе замедляющей системы есть специальные устройства для согласования ее с линиями передачи. Последние могут быть либо волноводными, либо коаксиальными. На вход поступает СВЧ сигнал, который усиливается в приборе и с выхода передается в нагрузку.
Трудно получить хорошее согласование во всей полосе усиления лампы. Поэтому есть опасность возникновения внутренней обратной связи из-за отражения электромагнитной волны на концах замедляющей системы, при этом ЛБВ может перестать выполнять свои функции усилителя. Для устранения самовозбуждения вводится поглотитель, который может быть выполнен в виде стержня из поглощающей керамики или в виде поглощающих плёнок.
Рисунок 1 Устройство ЛБВ типа О
В зависимости от назначения ЛБВ выпускаются на выходные мощности от долей мВт (входные маломощные и малошумящие ЛБВ в усилителях СВЧ) до десятков кВт (выходные мощные ЛБВ в передающих устройствах СВЧ) в непрерывном режиме и до нескольких МВт в импульсном режиме работы.
В ЛБВО малой и средней мощности применяют спиральные замедляющие системы, в мощных ЛБВО - цепочки связанных резонаторов
Электроны, пролетая сквозь замедляющую систему, отдают часть своей кинетической энергии СВЧ полю, что приводит к уменьшению скорости электронов. Но при этом нарушается условие фазового синхронизма Ve ? Vф. Отсюда вытекает основное ограничение КПД ЛБВО, связанное с невозможностью отдачи всей кинетической энергии электронов СВЧ полю: электронные сгустки смещаются из области тормозящего поля в область ускоряющего.
Нижний предел скорости электронов определяется фазовой скоростью замедленной волны. Поэтому величина КПД должна быть тем больше, чем значительнее превышение начальной скорости электронов над фазовой скоростью волны в замедляющей системе. Однако при увеличении рассинхронизма ухудшается группирование на входном участке замедляющей системы и резко уменьшается коэффициент усиления. Таким образом, требования максимального КПД и высокого коэффициента