Курс лекций за первый семестр

Информация - Математика и статистика

Другие материалы по предмету Математика и статистика

лько для линейных связей, используется для оценки связей между количественными признаками. Рассчитываются только по индивидуальным значениям.

Корреляционное отношение:

Эмпирическое: оба вида дисперсии рассчитываются по результативному признаку.

Теоретическое:

- дисперсия значений результативного признака рассчитанных по уравнению регрессии

- дисперсия эмпирического значения результативного признака

ПЛЮСЫ

  • высокая степень точности
  • подходит для оценки тесноты связи между описательным и количественным признаком, но количественный должен быть результативным
  • подходит для любых типов связей

Коэффициент корреляции Спирмена

xiyi101207304Ранги порядковые номера единиц совокупности в ранжированном ряду. Ранжировать оба признака необходимо в одном и том же порядке от меньших к большим или наоборот. Если ранги единиц совокупности обозначить рх и ру, то коэффициент корреляции рангов примет следующий вид:

Преимущества коэффициента корреляционного ряда:

  1. Ранжировать можно и по описательным признакам, которые нельзя выразить численно, следовательно расчет коэффициента Спирмена возможен для следующих пар признаков: кол-во кол-во; описательный количественный; Описательный описательный. (образование описательный признак)
  2. показывает направление связи

Недостатки коэффициента Спирмена.

  1. одинаковым разностям рангов могут соответствовать совершенно отличные разности значения признака (в случае количественных признаков). Пример: Выработка электроэнергии страны в год

США 2400 кВт/ч 1

РФ 800 кВт/ч 2

Канада 600 кВт/ч 3

Если среди значения Спирмена встречаются несколько одинаковых, то образуются связанные ранги т.е. одинаковые средние номера

800 1

600 2,5

600 2,5

400 4

В данном случае коэффициент Спирмена рассчитывается следующим образом:

j номера связок по порядку для признака х

Aj число одинаковых рангов в j связи по х

k номера связок по порядку признака у

Bk число одинаковых рангов в к-ой связке по у

  1. Коэффициент корреляции ранга Кендалла

- максимальная сумма ранга

S фактическая сумма рангов

Дает более строгую оценку чем коэффициент Спирмена.

Для расчета все единицы ранжируются по признаку х по признаку у для каждого ранга подсчитывается число последующих рангов превышающих данный их сумму обозначим Р и число последующих рангов ниже данного обозначения Q.

S=P-Q

P+Q=1/2n(n-1)

  1. Коэффициент корреляции ранга Фехнера.

ху60050++ - C70040+0 C30020-- - C40050-+ - H

Коэффициент Фехнера мера тесноты связи в виде отношения разности числа пар совпадающих и не совпадающих знаков к сумме этих чисел.

  1. расчет средних по х и у
  2. сравниваются индивидуальные значения xi yi со средними значениями с обязательным указанием знака + или -. Если знаки совпадают по х и у, то мы относим их числу С если, нет, то к Н.
  3. подсчитываем количество совпадающих и несовпадающих пар.

Коэффициент Фехнера очень грубый коэффициент оценки связи, не учитывающий величину отклонений от среднего значения, но он может служить ориентиром для оценки интенсивности связи.

Часто аРедко вЕсть ААа 5Ав 10Нет ВВа 7Вв 4Задача измерения связи становится перед статисткой по отношению к описательным признакам, важным частным случаем такой задачи, измерения связи между 2 альтернативными признаками один из которых причина другой последствие.

Теснота связи между 2 альтернативными признаками может быть измерена с помощью 2х коэффициентов:

  1. коэффициент ассоциации
  2. коэффициент контингенции

Коэффициент контингенции имеет недостаток: при равных нулю одного из двух гетерогенных сочетаний Ав или Ва коэффициент обращается в единицу. Очень либерально оценивает тесноту связи завышает ее.

Коэффициент Пирсона

При наличии не двух, а более возможных значений каждого из взаимосвязанных признаков рассчитываются следующие коэффициенты:

  1. Коэффициент Пирсона
  2. Коэффициент Чупрова для описательного признака

Коэффициент Пирсона рассчитывается по квадратным матрицам

доходНиже нормыНорма 2 нормы3 нормы1-3 ПМ24 - -3-7 ПМ535-7-12 ПМ10761Св. 12 ПМ

к1 и к2 число группы по признакам 1 и 2 соответственно. Минус коэффициента Пирсона в том, он не достигает 1 даже при увеличении количества групп.

Коэффициент Чупрова (1874 1926)

коэффициент Чупрова более строже оценивает тесноту связи.

6. Множественная корреляция.

Изучение связи между результативным и двумя или более факторными признаками называется множественной регрессией. При исследовании зависимостей методами множественной регрессии ставят 2 задачи.

  1. определение аналитического выражения связи между результативным признаком у и фактическими признаками х1, х2, х3, …хк, т.е. найти функцию у=f(х1, х2, …хк)
  2. Оценка тесноты связи между результативным и каждым из факторных признаков.

Корреляционно-регрессионная модель (КРМ) такое уравнение регрессии, которое включает основные факторы, влияющие на вариацию результативного признака.

Построение модели множественной регрессии включает этапы:

  1. выбор формы связи
  2. отбор факторных признаков
  3. обеспечение достаточного объе