Криптография. Шифры, их виды и свойства

Контрольная работа - Компьютеры, программирование

Другие контрольные работы по предмету Компьютеры, программирование

о строгим математическим обоснованием криптостойкости. К началу 30-х гг. окончательно сформировались разделы математики, являющиеся научной основой криптологии: теория вероятностей и математическая статистика, общая алгебра, теория чисел, начали активно развиваться теория алгоритмов, теория информации, кибернетика. Своеобразным водоразделом стала работа Клода Шеннона "Теория связи в секретных системах", которая подвела научную базу под криптографию и криптоанализ. С этого времени стали говорить о криптологии (от греческого kryptos - тайный и logos - сообщение) - науке о преобразовании информации для обеспечения ее секретности. Этап развития криптографии и криптоанализа до 1949 г. стали называть донаучной криптологией.

Шеннон ввел понятия "рассеивание" и "перемешивание", обосновал возможность создания сколь угодно стойких криптосистем. В 1960-х гг. ведущие криптографические школы подошли к созданию блочных шифров, еще более стойких по сравнению с роторными криптосистемами, однако допускающих практическую реализацию только в виде цифровых электронных устройств.

4. Компьютерная криптография (с 1970-х гг.) обязана своим появлением вычислительным средствам с производительностью, достаточной для реализации криптосистем, обеспечивающих при большой скорости шифрования на несколько порядков более высокую криптостойкость, чем "ручные" и "механические" шифры.

Первым классом криптосистем, практическое применение которых стало возможно с появлением мощных и компактных вычислительных средств, стали блочные шифры. В 70-е гг. был разработан американский стандарт шифрования DES. Один из его авторов, Хорст Фейстель описал модель блочных шифров, на основе которой были построены другие, более стойкие симметричные криптосистемы, в том числе отечественный стандарт шифрования ГОСТ 28147-89.

С появлением DES обогатился и криптоанализ, для атак на американский алгоритм был создано несколько новых видов криптоанализа (линейный, дифференциальный и т.д.), практическая реализация которых опять же была возможна только с появлением мощных вычислительных систем. В середине 70-х гг. ХХ столетия произошел настоящий прорыв в современной криптографии - появление асимметричных криптосистем, которые не требовали передачи секретного ключа между сторонами. Здесь отправной точкой принято считать работу, опубликованную Уитфилдом Диффи и Мартином Хеллманом в 1976 г. под названием "Новые направления в современной криптографии". В ней впервые сформулированы принципы обмена шифрованной информацией без обмена секретным ключом. Независимо к идее асимметричных криптосистем подошел Ральф Меркли. Несколькими годами позже Рон Ривест, Ади Шамир и Леонард Адлеман открыли систему RSA, первую практическую асимметричную криптосистему, стойкость которой была основана на проблеме факторизации больших простых чисел. Асимметричная криптография открыла сразу несколько новых прикладных направлений, в частности системы электронной цифровой подписи (ЭЦП) и электронных денег.

В 1980-90-е гг. появились совершенно новые направления криптографии: вероятностное шифрование, квантовая криптография и другие. Осознание их практической ценности еще впереди. Актуальной остается и задача совершенствования симметричных криптосистем. В этот же период были разработаны нефейстелевские шифры (SAFER, RC6 и др.), а в 2000 г. после открытого международного конкурса был принят новый национальный стандарт шифрования США - AES.

Таким образом, мы узнали следующее:

Криптология - это наука о преобразовании информации для обеспечения ее секретности, состоящая из двух ветвей: криптографии и криптоанализа.

Криптоанализ - наука (и практика ее применения) о методах и способах вскрытия шифров.

Криптография - наука о способах преобразования (шифрования) информации с целью ее защиты от незаконных пользователей. Исторически первой задачей криптографии была защита передаваемых текстовых сообщений от несанкционированного ознакомления с их содержанием, известного только отправителю и получателю, все методы шифрования являются лишь развитием этой философской идеи. С усложнением информационных взаимодействий в человеческом обществе возникли и продолжают возникать новые задачи по их защите, некоторые из них были решены в рамках криптографии, что потребовало развития новых подходов и методов.

2. Шифры, их виды и свойства

 

В криптографии криптографические системы (или шифры) классифицируются следующим образом:

симметричные криптосистемы

асимметричные криптосистемы

 

2.1 Симметричные криптографические системы

 

Под симметричными криптографическими системами понимаются такие криптосистемы, в которых для шифрования и расшифрования используется один и тот же ключ, хранящийся в секрете. Все многообразие симметричных криптосистем основывается на следующих базовых классах:

I. Моно - и многоалфавитные подстановки.

Моноалфавитные подстановки - это наиболее простой вид преобразований, заключающийся в замене символов исходного текста на другие (того же алфавита) по более или менее сложному правилу. В случае моноалфавитных подстановок каждый символ исходного текста преобразуется в символ шифрованного текста по одному и тому же закону. При многоалфавитной подстановке закон преобразования меняется от символа к символу. Один и тот же шифр может рассматриваться и как моно - и как мно?/p>