Концепция современного естествознания
Вопросы - Биология
Другие вопросы по предмету Биология
узиус ввел "принцип элементарного беспорядка" Поскольку проследить за движением каждой молекулы газа невозможно, следует признать ограниченность своих возможностей и согласиться, что закономерности, наблюдаемые в поведении массы газа как целого, есть результат хаотического движения составляющих его молекул. Беспорядок при этом понимается как независимость координат и скоростей отдельных частиц друг от друга при равновесном состоянии. Более четко эту идею высказал Больцман и положил ее в основу своей молекулярно- кинетической теории. Максвелл указал на принципиальное отличие механики отдельной частицы от механики большой совокупности частиц, подчеркнув что большие системы характеризуются параметрами (давление, температура и др ), не применимыми к от дельной частице. Так он положил начало новой науке - статистической механике Идея элементарного беспорядка, или хаоса устранила противоречие между механикой и термодинамикой. Знаменитое второе начало (закон) термодинамики в формулировке немецкого физика Р. Клаузиуса звучит так: "Теплота не переходит самопроизвольно от холодного тела к более горячему. Для отражения этого процесса в термодинамику было введено новое понятие - "энтропия". Под энтропией стали понижать меру беспорядка системы.
Более точная формулировка второго начала термодинамики приняла такой вид: при самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает.
Физический смысл возрастания энтропии сводится к тому, что состоящая из некоторого множества частиц изолированная (с постоянной энергией) система стремится перейти в состояние с наименьшей упорядоченностью движения частиц. Это и есть наиболее простое состояние системы, или термодинамическое равновесие, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно хаосу.
. 0ткрытые системы в природе и обществе
Классическая термодинамика имела дело с закрытыми системами, т.е. такими системами, которые не обмениваются со средой веществом, энергией и информацией. Напомним, что центральным понятием термодинамики является понятие энтропии. Это понятие относится к закрытым системам, находящимся в тепловом равновесии, которое можно охарактеризовать температурой Т. Изменение энтропии определяется формулой:
E = d Q / T,
где d Q - количество тепла, обратимо подведенное к систем или отведенное от нее (см.8.1.2.).
Именно по отношению к закрытым системам и были сформулированы два начала термодинамики. В соответствии с первым началом термодинамики, в закрытой системе энергия сохраняется, хотя и может приобретать различные формы.
Открытые системы - это такие системы, которые поддерживаются в определенном состоянии за счет непрерывного притока извне вещества, энергии или информации. Постоянный приток вещества, энергии или информации является необходимым условием существования неравновесных состояний в противоположность замкнутым системам, которые неизбежно стремятся (в соответствии со вторым началом термодинамики) к однородному равновесному состоянию. Открытые системы - это системы необратимые; в них важным оказывается фактор времени.
В открытых системах ключевую роль - наряду с закономерным и необходимым - могут играть случайные факторы, флуктуационные процессы. Иногда флуктуация может стать настолько сильной, что существовавшая прежде организация не выдерживает и разрушается.
22. Основные положения теории систем
Классическое и неклассическое естествознание объединяет одна общая черта: предмет познания у них - это простые (замкнутые, изолированные, обратимые во времени) системы. Но в сущности такое понимание предмета познания является сильной абстракцией. Вселенная представляет из себя множество систем. И лишь некоторые из них могут трактоваться как замкнутые системы, т.е. как "механизмы". Во Вселенной таких "закрытых" систем меньшинство. Подавляющее большинство реальных систем открытые. Это значит, что они обмениваются энергией, веществом и информацией с окружающей средой. К такого рода системам относятся и такие системы, которые больше всего интересуют человека, значимы для него - биологические и социальные системы. Одной из важных проблем в определении системы является выяснение сущности тех сил, которые объединяют множество в одну систему. Действительно, как образуются, существуют, функционируют, развиваются системы, как они сохраняют свою целостность, структуру, форму, ту особенность, которая позволяет отличить одну систему от другой? Здесь просматриваются два направления поисков ответа:
Первое - естественнонаучное - заключается в том, что исследуются особенности, специфика, характер системообразующих факторов в каждой анализируемой системе (химики, например, выделяют различные типы связи в веществе: ковалентная, водородная, ионная и др.).
Другое направление характеризуется попытками выявить за спецификой, уникальностью, единичностью конкретных системообразующих факторов закономерность присущую всем системам без исключения, но проявляющаяся по разному в разноуровневых системах. Сегодня специальные науки убедительно доказывают системность познаваемых ими частей мира. Вселенная предстает перед нами как система систем. Конечно, понятие система подчеркивает отграниченность, конечность и, метафизически мысля, можно прийти к выво?/p>