Конструирование устройства для измерения углового перемещения

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

?ть на две основные группы: стержневые, изготовляемые из проволоки или ленты, и упругие элементы в виде оболочек, которые выполняются из листового материала. Стержневые пружины предназначаются для восприятия, главным образом, сосредоточенных сил и моментов; упругие элементы в форме оболочек при работе обычно нагружаются давлением.

Стержневые пружины имеют две конструктивные основные формы: винтовую и плоскую. Упругие элементы в виде оболочек, реагирующих на изменение давления, называются манометрическими. К ним относятся мембраны, сильфоны и трубчатые пружины.

В динамометрах, где небольшие усилия (>10 кН) используются сплошные стержни, работающие на сжатие или сдвиг; для меньшего усилия (10-1 кН) используют кольца, а для малых усилий - тонкостенные цилиндры и плоские пружины в виде балок. При этом более эффективными оказываются конструкции в виде тонкостенного цилиндра или балки равного сопротивления, когда по всей поверхности упругого элемента механическое напряжение одинаково и материал используется наиболее рационально.

Наиболее часто применяемые в преобразователях являются спиральные пружины, сплошные, полые и плоские торсионы и растяжки.

Особенно разнообразны упругие элементы, применяемые для измерения давлений. Это плоские и гофрированные мембраны и мембранные коробки, использующие собственную жесткость или опирающиеся на внешнюю плоскую пружину или полый тонкостенный цилиндр, на который наклеены или напылены тензорезисторы.

Для получения больших линейных перемещений применяется сильфоны и трубки Бурдона, а для получения больших угловых перемещений - спиральные и винтовые трубки с внутренним давлением [5].

Среди плоских пружин выделяют наиболее используемые: прямые, кривые, спиральные пружины различных форм и размеров. Они называются плоскими, если оси этих пружин представляют собой плоские кривые. Плоские пружины успешно используются в качестве измерительных, направляющих, упругих подвесов, подвижных частей прибора и др. Плоские пружины изготовляются из круглой проволоки, но чаще они штампуются из пружинной ленты.

Плоские пружины применяются в различных устройствах, в роли кинематических элементов приборов: упругих опор и направляющих, гибких связей и деталей передаточно-множительных механизмов. Плоские пружины выполняют функции измерения в вибрографах, акселографах, тахометрах, манометрах, тягомерах и так далее.

Винтовые пружины обычно навиваются из проволоки в виде пространственной спирали. Винтовые пружины бывают: цилиндрические, спиральные, конические, параболоидные. Они используются особенно часто в качестве натяжных, обеспечивая необходимую силу натяга между деталями прибора. Иногда они применяются как пружинные двигатели

Во многих манометрических приборах в качестве упругого элемента применяются мембраны - гибкая круглая пластинка, получающая значительные упругие прогибы под действием давления.

Существуют плоские, гофрированные, выпуклые (сферические или конические) мембраны. Неметаллические мембраны имеют весьма малую жесткость и поэтому, как правило, работают совместно с измерительной винтовой пружиной, выполняя преобразование давления в усилие, воспринимаемое упругим элементом - пружиной.

В манометрических приборах широко используется свойство полой трубки деформироваться под действием давления. Обычно манометрическая трубчатая пружина представляет собой тонкостенную кривую трубку вытянутого поперечного сечения.

Манометрические трубчатые пружины бывают одновитковые (пружины Бурдона), многовитковые - винтовые или спиральные (пружины Бойса). В последнее время в манометрических приборах высокого давления (порядка сотен кгс/см2) нашли применение так называемые витые трубчатые пружины, представляющие собой естественную закругленную трубку [5].

 

.5.2 Материалы, применяемые для изготовления упругих элементов и их механические характеристики

Материал упругих элементов должен удовлетворять многим требованиям в зависимости от назначения элемента и условий работы. Он должен обладать высокими упругими свойствами, достаточной прочностью и выносливостью. Если необходимо, упругий элемент должен быть термостойким и высокопласгичным, иметь достаточную коррозийную стойкость, магнитную проницаемость, отвечать требованиям высокой или низкой электропроводимости, а также материал упругого элемента должен обладать соответствующими свойствами в отношении сварки или спайки.

Механические характеристики должны быть стабильны во времени и в условиях переменной температуры. Упругий элемент заданной формы можно приготовить только из достаточно пластичного материала. Однако для изготовления упругого элемента пригоден не любой пластичный материал, а лишь такой, который в результате последующей механической или термической обработки способен приобрести высокую упругость и прочность. Многие материалы, обладая высокой пластичностью в отожженном состоянии, в результате нагартовки, возникающей во время изготовления упругого элемента, значительно повышают свои упругие свойства.

К таким материалам относятся латуни, упругие элементы из нейзильбера, кремнемарганцевой, оловянно-цинковой и оловянно-фосфористой бронз, элинвара. Также к материалам для упругих элементов относится нержавеющая сталь 1Х18Н9Т, титан ВТ1-1, высокоуглеродистая стальная проволока и дисперсионно-твердеющие сплавы. В тех случаях, когда упругие элемен