Коммутация в сетях с использованием асинхронного метода переноса и доставки

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование

?дулем управления и другими функциональными блоками.

Централизованное управление коммутатором порой становится узким местом, если модуль управления перегружен обработкой требований. Чтобы избежать перегрузки, функции данного модуля можно распределять среди входных модулей, которые в этом случае будут контролировать поступающие потоки ячеек данных в целях учета ресурсов и измерения характеристик функционирования коммутатора. В свою очередь, выходные модульные устройства управления способны контролировать выходящие потоки ячеек [10,11].

Сложность управления коммутатором обусловлена прежде всего чрезвычайно широким спектром выполняемых им функций, которые к тому же постоянно эволюционируют. В связи с этими обстоятельствами разработка соответствующих международных рекомендаций и стандартов еще далека от своего завершения.

 

2.12 ПОЛЕ КОММУТАЦИИ ЯЧЕЕК

 

Поле коммутации отвечает за передачу ячеек данных (а в ряде случаев сигнальных и управления) между другими функциональными блоками. В его задачи входят также концентрация и мультиплексирование трафика, маршрутизация и буферизация ячеек, повышение отказоустойчивости коммутатора, многоадресная и широковещательная передача, распределение ячеек, основанное на приоритетах по задержкам, мониторинг случаев перегрузки и активизация индикатора перегрузки в прямом направлении (Explicit Forward Congestion Indication, EFCI) [8,16].

 

2.13 КОНЦЕНТРАЦИЯ И МУЛЬТИПЛЕКСИРОВАНИЕ

 

Для наиболее эффективного использования выходящего соединения трафик должен быть сконцентрирован на входах коммутационного поля. Чтобы добиться стандартной скорости интерфейса коммутационной матрицы, устройство агрегирует, потоки с низкой переменной битовой скоростью в трафик с более высокой скоростью. Коэффициент концентрации сильно коррелирован с характеристиками входящих потоков. Концентрация потоков может применяться при динамическом распределении трафика по нескольким плоскостям маршрутизации, а также при его буферизации и дублировании в целях повышения отказоустойчивости. Мультиплексирование потоков ячеек на входах коммутатора во многом аналогично процессу концентрации [8,9].

 

2.14 МАРШРУТИЗАЦИЯ И БУФЕРИЗАЦИЯ

 

Основными функциями, выполняемыми полем коммутации ячеек, являются маршрутизация и буферизация. Входной модуль дополняет тэгом маршрутизации каждую из ячеек, а коммутационное поле просто направляет их со входных портов на соответствующие выходные. Поступление ячеек может быть распределено во времени посредством использования сдвиговых регистров, каждый емкостью в одну ячейку. Поскольку не исключена одновременная адресация ячеек на один и тот же выход, должна быть предусмотрена возможность их буферизации [9,3].

Анализ различных схем маршрутизации и алгоритмов буферизации, применяющихся в ATM-коммутаторах, позволил сформулировать ряд важных принципов их проектирования: обеспечение распределенного управления и высокой степени параллелизма при обработке трафика, реализация функций маршрутизации на аппаратном уровне [10,8,13]. Прежде чем перейти к рассмотрению вариантов организации коммутационного поля, перечислим основные показатели, которыми они характеризуются:

  1. производительность (отношение суммарной скорости выходящего потока к суммарной скорости входящего);
  2. коэффициент использования (отношение средней скорости входящего потока к максимально возможной скорости выходящего);
  3. вероятность потерь ячеек;
  4. задержки передачи ячеек;
  5. длины очередей;
  6. сложность реализации.

Ранее методы коммутации подразделяй на пространственные, временные и их комбинации. Предложенная в дальнейшем классификация относит такие методы к одной из следующих категорий:

  1. с разделяемой памятью;
  2. с общей средой;
  3. с полносвязной топологией;
  4. с пространственным разделением (эта категория, в свою очередь, подразделяется на коммутацию, обеспечивающую единственный и множественные пути от входного порта к выходному). Для простоты далее будем рассматривать коммутатор с N входными и N выходными портами и одинаковыми скоростями портов, равными К ячеек/с.

 

2.15 МЕТОД РАЗДЕЛЯЕМОЙ ПАМЯТИ

 

Базовая структура коммутатора с разделяемой памятью приведена на рисунке 2 [8,9]. Входящие ячейки преобразуются из последовательного формата в параллельный и записываются в порт ОЗУ. Используя заголовки ячеек с тэгами маршрутизации, контроллер памяти решает, в каком порядке ячейки будут считываться из нее. Выходящие ячейки демультиплексируются при передаче на выходные порты и преобразуются из параллельного формата в последовательный.

Рисунок 2.2 - Структура коммутатора с разделенной памятью:

RA - чтение адреса; WA- запись адреса; S/P последовательно параллельное преобразование; P/S - параллельно-последовательное преобразование

 

Данный метод подразумевает организацию очередей на выходных портах, где все буферы формируют единое пространство памяти. Он привлекателен тем, что дает возможность вплотную приблизиться к теоретическому пределу производительности. Совместный доступ к буферной памяти минимизирует ее емкость, удерживая долю потерянных ячеек в заданных границах: при резком росте интенсивности трафика в направлении какого-либо выходного порта разделение памяти позволяет максимально сгладить пик нагрузки за счет использования свободной части буфера.

Коммутатор Prelude, разработ