Комбинаторика и вероятность
Методическое пособие - Математика и статистика
Другие методички по предмету Математика и статистика
Федеральное агентство по образованию
Сибирский государственный аэрокосмический университет
имени академика М.Ф. Решетнёва
Новоселов О.В., Скиба Л.П.
КОМБИНАТОРИКА И ВЕРОЯТНОСТЬ
Учебное пособие для слушателей подготовительных курсов
Красноярск 2009
УДК 519
Рецензенты: Балашова О.Ю., канд. физ. - мат. наук, проф. каф. высшей математики СибГАУ
Пашковская О.В., канд. физ. - мат. наук, доц. каф. Математика КрИЖТ ИрГУПС
Печатается по решению методического совета ИИКТ
Новоселов Олег Вадимович
Скиба Людмила Петровна
Новоселов О.В. Комбинаторика и вероятность: учебн. пособие для слушателей подготовит. курсов / О. В. Новоселов, Л.П. Скиба. СибГАУ, Красноярск, 2009. - 78 с.
Настоящее учебное пособие предназначено для слушателей подготовительных курсов и абитуриентов. В пособии разобраны основные принципы и формулы классической комбинаторики, а также приведено большое число примеров. Кроме того, приведены примеры использования методов комбинаторики в теории вероятностей.
Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнёва , 2009
ПРЕДИСЛОВИЕ
В настоящее время в связи с введением в школьный стандарт математического образования элементов комбинаторики и теории вероятностей, остро встают проблемы методической обеспеченности школьников и абитуриентов соответствующей литературой.
О необходимости изучения в школе элементов комбинаторики и теории вероятностей речь идет очень давно. Так ещё в 1899 году попечитель Московского учебного округа профессор П. А. Некрасов на совещании по вопросам о средней школе говорил об огромном значении в школьном образовании того, что сейчас принято называть стохастической линией в преподавании математики. Методические указания как раз и посвящены изложению тех понятий, фактов, задач и обстоятельств, с которых, собственно, берет свое начало эта самая стохастическая линия.
В школьном стандарте по математике перечисляются следующие вопросы комбинаторики и теории вероятностей.
Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.
Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события.
Цель указаний: дать некоторый минимум, доступный слушателям подготовительных курсов и достаточный для формирования у них первоначальных комбинаторно-вероятностных представлений (в рамках школьного стандарта).
Главной целью изучения элементов комбинаторики является формирование специального типа мышления - комбинаторного, связанного с перебором и подсчетом числа конфигураций элементов, удовлетворяющих определенным условиям. Существенность развития комбинаторных возможностей интеллекта учащихся очевидна и с общих позиций теории развития личности, и с точки зрения различного рода практических приложений.
Знакомство с теорией вероятностей происходит в последних пяти параграфах. Собственно, никакой теории нет. Изложение ведется в рамках классического определения вероятности и, по существу, представляет собой практический полигон, на котором применяются полученные ранее комбинаторные навыки.
ВВЕДЕНИЕ
Когда кончается игра в три кости,
То проигравший снова их берет
И мечет их один в унылой злости.
Данте Божественная комедия
Комбинаторика - это раздел дискретной математики, посвященный решению задач выбора и расположения элементов в соответствии с каким-либо правилом. Например, сколькими способами можно выбрать 6 карт из колоды, состоящей из 36 карт; или сколькими способами можно составить очередь, состоящей из10 человек и т.д. Каждое правило в комбинаторике определяет способ построения некоторой конструкции, составленной из элементов исходного множества и называемой комбинацией. Основная цель комбинаторики состоит в подсчете количества комбинаций, которые можно составить из элементов исходного множества в соответствии с заданным правилом. Простейшими примерами комбинаторных конструкций являются перестановки, размещения и сочетания.
Представителям самых различных специальностей приходится решать задачи, в которых рассматриваются те или иные комбинации, составленные из букв, цифр или иных объектов. Например, начальнику цеха надо распределить несколько видов работ между имеющимися станками, агроному - разместить посевы сельскохозяйственных культур на нескольких полях, заведующему учебной частью школы - составить расписание уроков, лингвисту - учесть различные варианты значений букв незнакомого языка и т.д. Область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов, называется комбинаторикой.
Теория вероятностей - это раздел математики, изучающий закономерности, присущие случайным явлениям. Казалось бы, закономерность и случай - противоположности. Закономерное - то, что в какой-т?/p>