Кластерный анализ

Информация - Математика и статистика

Другие материалы по предмету Математика и статистика

?ан на идее дендограммы или диаграммы дерева. Дендограмму можно определить как графическое изображение результатов процесса последовательной кластеризации, которая осуществляется в терминах матрицы расстояний. С помощью дендограммы можно графически или геометрически изобразить процедуру кластеризации при условии, что эта процедура оперирует только с элементами матрицы расстояний или сходства.

Существует много способов построения дендограмм. В дендограмме объекты располагаются вертикально слева, результаты кластеризации справа. Значения расстояний или сходства, отвечающие строению новых кластеров, изображаются по горизонтальной прямой поверх дендограмм.

Рис1

На рисунке 1 показан один из примеров дендограммы. Рис 1 соответствует случаю шести объектов (n=6) и k характеристик (признаков). Объекты А и С наиболее близки и поэтому объединяются в один кластер на уровне близости, равном 0,9. Объекты D и Е объединяются при уровне 0,8. Теперь имеем 4 кластера:

(А, С), (F), (D, E), (B).

Далее образуются кластеры (А, С, F) и (E, D, B), соответствующие уровню близости, равному 0,7 и 0,6. Окончательно все объекты группируются в один кластер при уровне 0,5.

Вид дендограммы зависит от выбора меры сходства или расстояния между объектом и кластером и метода кластеризации. Наиболее важным моментом является выбор меры сходства или меры расстояния между объектом и кластером.

Число алгоритмов кластерного анализа слишком велико. Все их можно подразделить на иерархические и неиерархические.

Иерархические алгоритмы связаны с построением дендограмм и делятся на:

а) агломеративные, характеризуемые последовательным объединением исходных элементов и соответствующим уменьшением числа кластеров;

б) дивизимные (делимые), в которых число кластеров возрастает, начиная с одного, в результате чего образуется последовательность расщепляющих групп.

Алгоритмы кластерного анализа имеют сегодня хорошую программную реализацию, которая позволяет решить задачи самой большой размерности.

1.7 Данные

Кластерный анализ можно применять к интервальным данным, частотам, бинарными данным. Важно, чтобы переменные изменялись в сравнимых шкалах.

Неоднородность единиц измерения и вытекающая отсюда невозможность обоснованного выражения значений различных показателей в одном масштабе приводит к тому, что величина расстояний между точками, отражающими положение объектов в пространстве их свойств, оказывается зависящей от произвольно избираемого масштаба. Чтобы устранить неоднородность измерения исходных данных, все их значения предварительно нормируются, т.е. выражаются через отношение этих значений к некоторой величине, отражающей определенные свойства данного показателя. Нормирование исходных данных для кластерного анализа иногда проводится посредством деления исходных величин на среднеквадратичное отклонение соответствующих показателей. Другой способ сводиться к вычислению, так называемого, стандартизованного вклада. Его еще называют Z-вкладом.

Z-вклад показывает, сколько стандартных отклонений отделяет данное наблюдение от среднего значения:

, где xi значение данного наблюдения, среднее, S стандартное отклонение.

Среднее для Z-вкладов является нулевым и стандартное отклонение равно 1.

Стандартизация позволяет сравнивать наблюдения из различных распределений. Если распределение переменной является нормальным (или близким к нормальному), и средняя и дисперсия известны или оцениваются по большим выборным, то Z-вклад для наблюдения обеспечивает более специфическую информацию о его расположении.

Заметим, что методы нормирования означают признание всех признаков равноценными с точки зрения выяснения сходства рассматриваемых объектов. Уже отмечалось, что применительно к экономике признание равноценности различных показателей кажется оправданным отнюдь не всегда. Было бы, желательным наряду с нормированием придать каждому из показателей вес, отражающий его значимость в ходе установления сходств и различий объектов.

В этой ситуации приходится прибегать к способу определения весов отдельных показателей опросу экспертов. Например, при решении задачи о классификации стран по уровню экономического развития использовались результаты опроса 40 ведущих московских специалистов по проблемам развитых стран по десятибалльной шкале:

обобщенные показатели социально-экономического развития 9 баллов;

показатели отраслевого распределения занятого населения 7 баллов;

показатели распространенности наемного труда 6 баллов;

показатели, характеризующие человеческий элемент производительных сил 6 баллов;

показатели развития материальных производительных сил 8 баллов;

показатель государственных расходов 4балла;

военно-экономические показатели 3 балла;

социально-демографические показатели 4 балла.

Оценки экспертов отличались сравнительно высокой устойчивостью.

Экспертные оценки дают известное основание для определения важности индикаторов, входящих в ту или иную группу показателей. Умножение нормированных значений показателей на коэффициент, соответствующий среднему баллу оценки, позволяет рассчитывать расстояния между точками, отражающими положение стран в многомерном пространстве, с учетом неодинакового веса их признаков.

Довольно часто при решении подобных задач используют не один, а два расчета: первый, в котором все признаки считаются рав