Автоматическая система регулирования
Реферат - Компьютеры, программирование
Другие рефераты по предмету Компьютеры, программирование
?иента передачи при 10 % по формуле:
где - максимальное установившееся значение сигнала.
- минимальное значение сигнала.
Подставляя полученные данные, получим:
Выбираем х1, т.к только он входит в диапазон экспериментальных значений. Подставим значение х1 в (1.2) и получим значение коэффициента передачи при 10 % номинального режима:
Рассчитаем значение коэффициента передачи при 50 % по формуле:
Подставляя полученные данные, получим:
Выбираем х1, т. к только он входит в диапазон экспериментальных значений. Подставим значение х1 в (1.2) и получим значение коэффициента передачи при 50 % номинального режима:
Рассчитаем значение коэффициента передачи при 90 % по формуле:
Выбираем х1, т. к только он входит в диапазон экспериментальных значений. Подставим значение х1 в (1.2) и получим значение коэффициента передачи при 90 % номинального режима:
Результаты расчета сведены в таблицу.
Таблица 4
Коэффициенты передачи.
10%х1.2874.5187.824к0.4380.4280.418
Ниже приведен проверочный расчет коэффициентов передачи объекта на ЭВМ в системе MathCad.
- Динамическая модель объекта.
2.1 Постановка задачи.
Динамическая модель связывает изменение входных и выходных величин во времени, то есть отражает протекание переходного процесса.
Для получения динамической характеристики объекта регулирования необходимо выполнить следующие действия:
- задаться рядом значений времени t;
- подав на вход объекта возмущение, для каждого ti зарегистрировать значение выходного сигнала yi.
Полученная, таким образом, динамическая характеристика заданного объекта регулирования, приведена в табл. 5.
Таблица 5
Динамическая характеристика объекта регулирования
i12345678910t0123456789Y000.50.710.80.910.980.990.9951
Для получения аналитической зависимости, заданную таблично динамическую характеристику необходимо аппроксимировать экспоненциальным выражением первого порядка. Затем, по наименьшему значению суммы квадратов отклонений для характеристик без запаздывания и с запаздыванием, нужно выбрать наиболее приближенную к экспериментальным данным динамическую характеристику.
После расчета выполненного вручную следует проверить его на ПЭВМ в системе MathCad, а также произвести расчет динамической характеристики второго порядка и выбрать наиболее точную.
2.2 Модель объекта первого порядка без запаздывания.
Динамическая модель первого порядка без запаздывания представляет собой неоднородное дифференциальное уравнение первого порядка:
(2.1)
гдеT - постоянная времени объекта;
k - коэффициент передачи при 50% номинального режима.
Решением уравнения (2.1) будет экспоненциальная зависимость сигнала на выходе от времени:
(2.2)
гдеy0=0 - начальное состояние выхода объекта;
k.x=yуст.=10 - установившееся состояние выхода объекта.
Преобразовав выражение (2.2), получим:
(2.3)
Обозначим левую часть выражения (2.3) как . Значения и их натуральные логарифмы приведены в табл. 6.
Таблица 6
Значения и
i12345678910yi000.50.710.80.910.980.990.9951110.50.290.20.090.020.010.005000-0.693-1.238-1.609-2.408-3.912-4.605-5.298-?
Преобразовав выражение (2.3), получим:
откуда по методу наименьших квадратов найдем постоянную времени:
Таким образом динамическая характеристика первого порядка без запаздывания будет иметь вид:
Вычислим аналитические значения функции, их отклонения от экспериментальных значений, а также квадраты отклонений и сведем их в
Таблица 7
Результаты расчета
i12345678910yi000.50.710.80.910.980.990.9951yiанал00.460.7080.8430.9150.9540.9750.9870.9930.996yi0-0.46-0.208-0.133-0.115-0.0444.8•10-33.4•10-32.2•10-33.9•10-30.0000.2120.0430.0180.0131.9•10-32.3•10-51.1•10-54.9•10-61.5•10-5
Далее находим сумму квадратов отклонений:
Динамическая модель объекта первого порядка без запаздывания является наименее точной, поэтому ее применение не целесообразно при моделировании динамики объекта. Ниже приведен проверочный расчет динамической модели объекта первого порядка без запаздыванием и модели второго порядка без запаздыванием на ЭВМ в системе MathCad.
2.3. Модель объекта первого порядка с запаздыванием
Динамическая модель первого порядка с запаздыванием представляет собой неоднородное дифференциальное уравнение первого порядка:
(2.4)
гдеT - постоянная времени объекта;
k - коэффициент передачи при 50% номинального режима;
- время запаздывания.
Решением уравнения (2.1) будет экспоненциальная зависимость сигнала на выходе от времени:
(2.5)
гдеy0=0 - начальное состояние выхода объекта;
k.x=yуст.=10 - установившееся состояние выхода объекта.
Проведем преобразования, аналогичные модели без запаздывания
или запишем в виде системы :
(2.6)
где берется из табл. 7.
Так как , и , то все уравнения содержащие эти элементы в расчете участвовать не будут.
Решим систему (2.6) методом наименьших квадратов. Составим матрицы:
- искомых величин:
- правой части системы:
- левой части системы:
- произведение
- произведение
Таким образом получили матричное уравнение:
Находим главный определитель:
Подставляя матрицу поочередно в первый и второй столбец матрицы , находим вспомогательные определители:
Находим постоянную времени и время задержки:
Таким образом динамическая характеристика первого порядка с запаздыванием б