Автоматика горячего водоснабжения
Курсовой проект - Строительство
Другие курсовые по предмету Строительство
лассу систем автоматической стабилизации режима работы объекта относительно его рабочей точки (относительно номинального режима работы). В этом случае в процессе работы отклонения переменных, относительно рабочей точки будут малы, что позволяет использовать линейные модели объекта управления. Однако, при смене рабочей точки происходит изменение коэффициента усиления объекта, что будет негативно влиять на динамику замкнутой системы.
Для системы автоматической стабилизации не обязательно определение полной статической характеристики объекта. Достаточно знать лишь динамический коэффициент усиления в окрестности рабочей точки. В тоже время на некоторых объектах управления необходимо знание всей статической характеристики процесса. Если она носит нелинейный характер, то с целью стабилизации общего коэффициента усиления системы, в замкнутый контур включают дополнительную нелинейность, обратную статической характеристике объекта. На практике такой подход реализуется путем использования регулирующих клапанов с различными видами расходной характеристики.
Реальные объекты занимают в пространстве какой-либо объем, поэтому регулируемая величина зависит не только от времени, но и от текущих координат точки измерения. Поэтому полное описание объекта управления будет состоять из системы дифференциальных уравнений с частными производными. При использовании точечного метода измерения одним датчиком, система дифференциальных уравнений с частными производными переходит в систему уравнений с обычными производными. Это существенно упрощает построение математической модели объекта, позволяя определить его передаточную функцию. Однако при наличии множества датчиков, распределенных например по длине объекта, может возникнуть необходимость использования множества управляющих сигналов (распределенное управление).
Объекты могут быть как стационарные и так и нестационарные. В нестационарных объектах параметры изменяются с течением времени (дрейфуют). Примерами таких объектов могут быть химический реактор с катализатором, активность которого падает с течением времени, или аэрокосмический аппарат, масса которого по мере выгорания топлива уменьшается. Такие явления должны учитываться при проектирование соответствующих систем управления.
Известно, что лишь при наличии достаточно точной математической модели объекта можно спроектировать высококачественную систему управления этим объектом. Причем, согласно принципу Эшби, сложность управляющего устройства должна быть не ниже сложности объекта управления.
Поэтому основной целью построения математической модели объекта управления является определение структуры объекта, его статических и динамических характеристик. Особенно важно определение структуры для многомерных и многосвязных объектов управления. В тоже время для локальных объектов управления определение структуры может быть сведено к определению порядка дифференциального уравнения описывающего объект. Кроме того, оцениваются входные сигналы и возмущения действующие на объект (их статистические характеристики, точки приложения, максимальные амплитуды). Значение этих характеристик позволяет выбрать структуру регулятора и рассчитать параметры его настройки, ориентируясь также на критерий качества работы этой системы.
Наряду с динамической частью W(p) в структуре объекта могут содержаться различные запаздывания в сигналах управления, измерения и состояния (рецикла) (Рисунок 2).
Рисунок 2. Объект управления с запаздыванием.
В промышленных объектах под рециклом понимается возврат части продукта с выхода объекта на его вход с целью повторной переработки. Большинство промышленных объектов управления имеют запаздывания. Наличие запаздывания объясняется конечной скоростью распространения потоков информации в технологических объектах (транспортное запаздывание).
1.3.2 Назначение и принцип работы основных элементов прибора ТРМ-1
Терморегулятор ОВЕН ТРМ1 предназначен для измерения, регистрации или регулирования температуры теплоносителей и различных сред в холодильной технике, сушильных шкафах, печах различного назначения и другом технологическом оборудовании, а также для измерения других физических параметров (веса, давления, влажности и т. п.). Класс точности 0,5/0,25
Основные функции измерителя-регулятора ОВЕН ТРМ1:
Универсальный вход для подключения широкого спектра датчиков температуры, давления, влажности, расхода, уровня и т. п.
Регулирование входной величины: двухпозиционное регулирование, аналоговое П-регулирование
Цифровая фильтрация и коррекция входного сигнала, масштабирование шкалы для аналогового входа
Вычисление и индикация квадратного корня из измеряемой величины (например, для регулирования мгновенного расхода)
Выходной сигнал 4..20 мА для регистрации измеренной величины (модиф. по типу выхода И)
Возможность управления трехфазной нагрузкой (модиф. по типу выхода С3)
Импульсный источник питания 90...245 В 47...63 Гц
Встроенный источник питания 24 В для активных датчиков, выходных аналоговых устройств (ЦАП) и др.
Программирование кнопками на лицевой панели прибора
Сохранение настроек при отключении питания
Защита настроек от несанкционированных изменений
Рисунок 3. Функциональная схема прибора ТРМ1.
Терморегулятор ТРМ1 имеет один универсальный вход