История доказательства Великой теоремы Ферма
Информация - Педагогика
Другие материалы по предмету Педагогика
Южно-Сахалинский Государственный Университет
Кафедра математики
Реферат
Тема: История доказательства Великой теоремы Ферма
Автор:Меркулов М. Ю.Группа:411Южно-Сахалинск
2003гСуть теоремы
Проблема,о которой пойдет речь в этом реферате выглядит довольно простой потому, что в основе ее лежит математическое утверждение, которое всем известно, теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.
Благодаря этому пифагорову заклинанию, теорема запечатлелась в мозгу миллионов, если не миллиардов, людей. Это фундаментальная теорема, заучивать которую заставляют каждого школьника. Но несмотря на то, что теорема Пифагора доступна пониманию десятилетних, она является вдохновляющим началом проблемы, при решении которой потерпели фиаско величайшие умы в истории математики.
Теорема Пифагора дает нам соотношение, которое выполняется для всех прямоугольных треугольников и, следовательно, определяет прямой угол. В свою очередь, прямой угол определяет перпендикуляр, т.е. отношение вертикали к горизонтали, а в конечном счете отношение между тремя измерениями нашего мира. Математика через прямой угол определяет самую структуру пространства, в котором мы живем. Это очень глубокая мысль.
В символьной записи теорема Пифагора утверждает, что для катетов x y и гипотенузы z прямоугольного треугольника:
x2 + y2 = z2.
Пифагоровы тройки представляют собой комбинации из трех целых чисел, удовлетворяющих соотношению Пифагора x2 + y2 = z2. Например, соотношение Пифагора выполняется при x=3, y=4 и z=5:
З2 + 42 = 52, 9 + 16 = 25.
Пифагорейцы мечтали найти и другие пифагорейские тройки, другие квадраты, из которых можно было бы сложить третий квадрат больших размеров. Еще одна пифагорова тройка: x=5, y=12 и z=13:
52 + 122 = 132, 15 + 144 = 169.
Приведем пифагорову тройку из больших чисел: x=99, y=4900 и z=4901. По мере того, как числа возрастают, пифагоровы тройки встречаются все реже и находить их становится все труднее и труднее. Пифагорейцы изобрели метод отыскания таких троек и, пользуясь им, доказали, что пифагоровых троек существует бесконечно много. Рассмотрим уравнение, очень похожее на уравнение Пифагора, но отличающееся от него тем, что все числа входят в кубе:
x3 + y3 = z3.
Найти целочисленные решения уравнения Пифагора, т.е. пифагоровы тройки, было сравнительно легко, но стоит лишь степени измениться с 2 на 3 (т.е. заменить квадраты кубами), как решение уравнения, столь похожего на уравнения Пифагора, в целых числах, по-видимому, становится невозможным. Поколения математиков исписывали страницу за страницей в своих блокнотах в тщетной надежде найти решение уравнения в целых числах.
Более того, если степень повысить с 3 до любого большего целого числа (т.е. до 4, 5, 6, ...), то найти целочисленное решение такого уравнения, по-видимому, также невозможно. Иначе говоря, у более общего уравнения
xn + yn = zn,
где n больше 2, решения в целых числах не существует. Всего лишь изменив 2 в уравнении Пифагора на любое целое число бльшее 2, мы вместо сравнительно легко решаемого уравнения получаем задачу умопомрачительной сложности. Великий математик XVII века француз Пьер де Ферма сделал удивительное заключение: он утверждал, что знает, почему никому не удавалось найти решение общего уравнения в целых числах. По его словам, причина заключалась в том, что такого решения не существует.
Биография Ферма
Пьер де Ферма родился 20 августа 1601 года в городе Бомон-де-Ломань на юго-западе Франции. Его отец, Доминик Ферма, был состоятельным торговцем кожей, поэтому Пьер имел счастливую возможность получить престижное образование во французском монастыре Грансельва, а затем, в течение некоторого времени учиться в университете Тулузы. Не сохранилось никаких документов, свидетельствующих о том, что юный Ферма проявил блестящие способности к математике.
Под давлением семьи Ферма поступил на гражданскую службу и в 1631 году был назначен советником парламента Тулузы (conseiller au Parlement de Toulouse) заведующим отдела прошений.
Ферма избрал стратегию неукоснительного исполнения возложенных на него обязанностей и не беспокоился о себе. У него не было особых политических амбиций, и он делал все от него зависящее, чтобы по возможности оставаться в стороне от кипения парламентских страстей. Всю энергию, которую ему удавалось сохранить после исполнения служебных обязанностей, Ферма отдавал математике, и в свободное время Ферма с наслаждением предавался своему увлечению. По существу, Ферма был истинным ученым-любителем, человеком, которого Э. Т. Белл назвал князем любителей. Но математический талант его был столь велик, что Джулиан Кулидж в своей книге Математика великих любителей исключил Ферма из числа любителей на том весьма веском основании, что тот был настолько велик, что должен считаться профессионалом.
Несмотря на настойчивые просьбы знакомых и друзей, Ферма упорно отказывался публиковать свои доказательства. Публикация результатов и признание ничего не значили для него. Ферма получал удовлетворение от сознания того, что он в тиши своего кабинета без помех может создавать новые теоремы. Но скромный и замкнутый гений не был