Исследование электромагнитных свойств композитов на основе углерода трубчатой структуры
Дипломная работа - Физика
Другие дипломы по предмету Физика
·цы обладают узким спектром распределения по диаметру. Этот факт немаловажен для исследований резистивных свойств материала, состоящего из многослойных углеродных нанотрубок. Кроме этого, было показано наличие дефектов структуры многослойных углеродных нанотрубок.
Рис. 8. Фотографии многослойных углеродных каталитических нанотрубок со средним внешним диаметром 7,52,2 нм, полученные при помощи просвечивающего электронного микроскопа: (а) масштаб 100 нм, (б) масштаб 20 нм.
Рис. 9. Фотографии многослойных углеродных каталитических нанотрубок со средним внешним диаметром 14,88,6 нм, полученные при помощи просвечивающего электронного микроскопа: (а) масштаб 100 нм, (б) масштаб 20 нм.
2.2 Исследуемые образцы
Исследуемые композиты были получены химическим синтезом в институте Катализа в группе к.х.н. В.Л. Кузнецова. Полимерные композиты полиметилметакрилат (ПММА) - УТС (углерод трубчатая структура) получали по коагуляционному методу. N-метилпирролидинон (NMP) и диметилформамид (ДМФА) были выбраны в качестве растворителя для диспергирования, т. к. они обладают наибольшей сольватирующей способностью к агрегатам УТС. Расчетное количество было диспергировано в 60 мл NMP с использованием ультразвукового диспергатора с частотой 22.5 кГц и мощностью 900 Вт в течении 15 минут. После этого, к полученной суспензии добавлялось 40 мл раствора ПММА в ДМФА с концентрацией 0.05 мг/мл, и полученная система была повторно диспергирована в течении 15 мин. После проведения диспергирования, полученная суспензия была смешана с большим количеством воды (1 л, температура 65 C). Сразу после смешения с водой, образовывался объемный аморфный осадок, цвет которого зависел от концентрации УТС в полимере. Полученный осадок фильтровали под вакуумом и промывали водой 5-6 раз для удаления NMP и ДМФА. После этого образцы были высушены в сушильном шкафу при температуре 55 С в течении 2 суток. Полученный порошок был измельчен в мельнице до однородного пылеобразного состояния. Образцы пленок полимерных композитов получали методом горячего прессования. Для этого пресс-форму с помещенным образцом прогревали в течении 20 минут при температуре 200 С, после чего проводилось прессование.
Композит представляет собой тонкие круглые диски диаметром несколько сантиметров. В качестве наполнителя в композитах представлены серии образцов многослойных углеродных каталитических нанотрубок со средними внешними диаметрами: 5,80,8 нм; 7,52,2 нм; 8,83 нм; 11,55,1 нм; 14,88,6 нм. Количество слоев для данных многослойных нанотрубок составляло величину 3-4 (5,80,8 нм), 4-6 (7,52,2), 4-8 (8,83), 7-12 (11,55,1), 10-16 (14,88,6). Исследовались композиты с массовой концентрацией нанотрубок от 0.5% до 5% и количеством слоев 4-6 (7,52,2).
2.3. Установка и метод измерения
Установка смонтирована из емкостной ячейки, моста отношения малых емкостей, вольтметра SR-830.
Емкостная ячейка рис. 10 представляет собой две параллельные пластины, между которыми можно размещать исследуемый образец. Пластины помещались внутри латунного экрана. Емкостная ячейка есть конденсатор, толщина зазора между пластинами конденсатора равна 1 мм, диаметр пластин - 10 мм. Ячейка сконструирована таким образом, чтобы емкость подводящих проводов не влияла на результат эксперимента. Это достигнуто путем замыкания отводящих проводов на латунный корпус ячейки.
Для измерений вырезались образцы диаметром 10 мм по диаметру пластин конденсатора. Толщина пластин измерялась микрометром с точностью 0,01 мм.
Рис. 10. Сборочный чертеж емкостной ячейки, в которую помещались исследуемые композиты. 1, 2 - разъемы CR-50, 3 - пластины конденсатора, 4 - отверстие для заполнения конденсатора композитами, 5 - латунный корпус
Использовался компенсационный метод измерения емкости конденсатора. Отношение емкости конденсатора заполненного композитом к емкости пустого конденсатора (в пренебрежении краевыми эффектами) - это и есть искомая диэлектрическая проницаемость. На рис. 11 приведена принципиальная схема установки. Задача состояла в том, чтобы скомпенсировать токи в цепях (см. рис. 11) путем подбора параметров емкости и сопротивления на мосте отношения малых емкостей. С генератора подается напряжение на мост отношения малых емкостей, к которому подсоединена измерительная ячейка С0. В С0 помещался композит, затем на нановольтметре добивались значения нуля - контуры скомпенсированы. Затем записывались значения емкости на Сx.
Рис. 11. Принципиальная схема измерения (1-источник напряжения, 2-вольтметр, 3-подстроечное мостовое сопротивление, 4-измерительная ячейка, 5-эквивалентное сопротивление конденсатора, 6-эталонная емкость моста)
Образец в ячейке обкладывался дополнительным материалом в виде тефлоновых дисков (рис. 12), т. к. некоторые из композитов могли быть проводящими, и могло произойти короткое замыкание. Поэтому вначале проводились измерения емкости и тангенса угла потерь тефлона в зависимости от частоты.
Рис. 12. Заполнение конденсатора композитом с тефлоновыми обкладками
Для определения реальной части диэлектрической проницаемости, с учетом заполнения зазора конденсатора, была выведена формула методом расчета цепей с параллельными конденсаторами, коими являлись слой диэлектрика, воздуха и композита. Также учитывалось влияние краевого эффекта ввиду малых размеров измерительной ячейки [16]. Для данной измерительной ячейки он составлял около 6%.