Исследование резонанса в одиночных колебательных контурах
Контрольная работа - Физика
Другие контрольные работы по предмету Физика
Белорусский государственный университет информатики и радиоэлектроники
Кафедра теоретических основ электротехники
Отчёт по лабораторной работе №4
ПО ТЕМЕ: “ИССЛЕДОВАНИЕ РЕЗОНАНСА В ОДИНОЧНЫХ КОЛЕБАТЕЛЬНЫХ КОНТУРАХ”
Выполнил:
Студент группы 851003
Куликов С.С.
Проверил:
Преподаватель
Коваленко В.М.
Минск, 1999
1. ЦЕЛЬ РАБОТЫ
Экспериментально исследовать частотные и резонансные характеристики последовательного контура, влияние активного сопротивления на вид резонансных кривых. Ознакомиться с настройкой последовательного контура на резонанс с помощью ёмкости.
2. ПОСЛЕДОВАТЕЛЬНЫЙ КОНТУР
Рис. 1. Схема цепи
Таблица-1 (“Исходные данные”)
U, Вrk, ОмLk, ГнC, мкФW, витков3,0350,2552400
3. ТЕОРЕТИЧЕСКИЙ РАСЧЁТ
Определение угловой частоты:
Определение циклической частоты:
Определение характеристического сопротивления:
Определение добротности:
;
Резонансная характеристика тока:
;
Величина тока при резонансе:
Рис. 2. Резонансная кривая тока.
Частотная характеристика напряжения на ёмкости:
;
Резонансная частота напряжения на ёмкости:
Напряжение на конденсаторе при резонансе:
;
Частотная характеристика напряжения на индуктивности:
;
Резонансная частота напряжения на индуктивности:
Напряжение на индуктивности при резонансе:
Полное сопротивление контура:
Рис. 3. Резонансные кривые напряжений на ёмкости и индуктивности
4. ПРАКТИЧЕСКИЙ РАСЧЁТ
Рис.4. Схема
Таблица 2.
Зависимость тока и напряжений на индуктивности и ёмкости от частоты при r1=0
f0, Гц507090110120130140I(f), мА691527365785UC(f), B3,53,94,56,59,314,320,1UL(f), B0,50,91,63,96,311,219,7f0, Гц150170190210230270300I(f),мА7740251915108UC(f),B16,78,24,23,12,11,20,7UL(f),B14,312,17,16,14,94,13,9
Таблица 3.
Зависимости тока и напряжений на индуктивности и ёмкости от частоты при r1<>0
f0, Гц507090110120130140I(f), мА581423314149UC(f), B3,43,84,87,18,110,111,1UL(f), B0,40,81,94,95,78,310,1f0, Гц150170190210230270300I(f),мА463020161397,9UC(f),B9,75,63,52,41,81,10,6UL(f),B9,97,96,25,24,74,03,8Частотные характеристики Xc(f), XL(f), ZK(f).
Реактивные сопротивления ёмкости и индуктивности и полное сопротивление цепи определяются по формулам:
Рис. 5. Зависимость реактивных сопротивлений элементов и полного сопротивления цепи от частоты.
Таблица 4.
Зависимость реактивных сопротивлений элементов и полного сопротивления цепи от частоты при r1=0.
f, Гц507090110120130140XC(f), кОм0,640,460,350,290,270,250,23XL(f), кОм0,070,110,140,170,190,200,22Z(f), кОм0,560,330,220,120,090,050,04f, Гц150170190210230270300XC(f), кОм0,210,190,170,150,140,120,11XL(f), кОм0,240,270,290,330,360,420,47Z(f), кОм0,040,090,140,180,230,300,37
Характеристическое сопротивление .
Характеристическое сопротивление контура определяется по точке пересечения частотных характеристик на частоте 142 Гц. В точке пересечения реактивные сопротивления катушки индуктивности и ёмкости равны между собой и составляют примерно 210-220 Ом. Теоретическое расчётное значение характеристического сопротивления и экспериментальное значение совпадают с достаточной точностью.
Резонансные характеристики контура I(f), UK(f), UC(f):
Рис.6. Зависимость тока от частоты сигнала
Рис.7. Зависимость напряжения на реактивных элементах от частоты сигнала
Определение добротности Q:
а) При r1=0
По напряжениям на катушке индуктивности и ёмкости в момент резонанса. f0=142 Гц
;
По ширине полосы пропускания резонансной кривой тока на уровне
I=0,7I0=0,787= 60 мА.
б) При r1=50 Ом
По напряжениям на катушке индуктивности и ёмкости в момент резонанса
f0=142 Гц.
;
По ширине полосы пропускания резонансной кривой тока на уровне
I=0,7I0=0.7*53= 36 мА.
По отношению характеристического и активного сопротивлений контура.
Векторная диаграмма тока и напряжений для частоты f<f0.
f=130 Гц, mU=2 В/см.
Векторная диаграмма тока и напряжений для частоты f=f0
f=142 Гц, mU=2 В/см, Ur1=U
Векторная диаграмма тока и напряжений для частоты f>f0
f=150 Гц, mU=2 В/см
Таблица 5.
Зависимости тока и напряжений на катушке и конденсаторе от ёмкости (f=100 Гц).
C, мкФ012345678910I(C), мА0157,51012,513,819404867UC(f), B33,43,53,73,84,14,66,57,58,39,5UL(f), B0,10,30,611,21,62,13,85,16,28,1C, мкФ11121314151617181920I(C), мА72747877736763574943UC(f), B9,81010,3986,96,15,14,24,1UL(f), B8,49,510109,58,88,37,57,27,1
Рис. 8 Частотные характеристики тока и напряжений последовательного контура на частоте 100 Гц при изменении ёмкости
ВЫВОД
Последовательный контур представляет собой электрическую цепь, состоящую из последовательно соединённых активного сопротивления, ёмкости и индуктивности. Резонанс напряжений в последовательной цепи возникает на частоте, при которой реактивные сопротивления ёмкости и индуктивности равны. На резонансной частоте сопротивление последовательного контура минимально и равно активному сопротивлению цепи. Падения напряжений на ёмкости и индуктивности и ток в цепи достигают максимальных значений.