Исследование и разработка программ расчета источников вторичного электропитания на ЭВМ

Отчет по практике - Компьютеры, программирование

Другие отчеты по практике по предмету Компьютеры, программирование

°зователь (СП), работающий на повышенной частоте преобразования. Очень часто функции ключевого стабилизатора и преобразователя совмещаются в СП с внутренней стабилизацией. Широкое внедрение бестрансформаторных ИВЭ сдерживается двумя основными факторами: трудностями обеспечения надежной работы из-за возможных больших "сквозных" и пусковых токов и наличием высокого уровня генерируемых радиопомех при переключениях транзисторов и диодов в силовых цепях источника.

ИВЭ с бестрансформаторным входом могут выполняться с удельными показателями от 70 до 300 Вт/дм3.

При питании РЭА от систем электроснабжения постоянного тока и от автономных источников электрической энергии в СВЭП применяются функциональные схемы, изображенные на рис. 3. Основным функциональным узлом ИВЭ, использующим электроэнергию автономного источника или системы электроснабжения постоянного тока, является СП, преобразующий напряжение постоянного тока источника в переменные напряжения прямоугольной или ступенчатой формы. В многоканальных ИВЭ используются способы централизованной стабилизации каждого канала питания (рис. 3, а). В первом случае суммарная стабильность обеспечивается до 5%, а во втором - до 1,5…2%.

Нередко используется функциональная схема (рис. 3, б), в которой в цепь питания СП включается стабилизатор напряжения линейного или ключевого типа. Линейный стабилизатор включается для получения на выходе улучшенного качества переходного процесса при резких изменениях тока в нагрузке и напряжения питания. Ключевой стабилизатор применяется в случаях когда в автономном источнике или системе электроснабжения постоянного тока пределы изменения напряжения питания существенно превосходят установившийся нормальный режим их работы и к качеству выходной электроэнергии не предъявляются высокие требования.

 

 

 

 

 

 

а)

 

 

 

 

б)

 

 

 

в)

Рис. 3. Структурные схемы ИВЭ с питанием от системы электроснабжения постоянного тока на основе статического преобразователя с внутренней стабилизацией (а), статического преобразователя и стабилизатора напряжения (б), ключевого стабилизатора (в):

СП - статический преобразователь; СН - стабилизатор напряжения; Т - трансформатор высокочастотный; В1, В2, В3 - выпрямители; Ф1, Ф2, Ф3 - фильтры; Н - нагрузка; НЭ - накопительный элемент; СУ - схема управления; РЭ - регулирующий элемент.

 

Иногда в РЭА не требуется обеспечивать гальваническую развязку ИВЭ от системы электроснабжения постоянного тока. В таких случаях в СВЭП применяются ключевые стабилизаторы напряжения (КСН), которые выполняются по схеме рис. 3, в и обеспечивают функции трансформации и стабилизации напряжения, а также при необходимости инвертирования выходного напряжения. С помощью этих функциональных узлов удается обеспечивать суммарную стабильность выходных напряжений до 5% и создавать СВЭП с широкой шкалой выходных напряжений от 4 до 100 В. Схемы управления КСН, представляющие собой широтно-импульсные модуляторы, выполняются на основе микросхем К142ЕПI. Иногда с целью построения унифицированных схем стабилизаторов понижающего, повышающего и полярно-инвертирующего типов они могут быть универсальными.

Применение высокочастотных СП, работающих от входного источника постоянного тока по схемам рис. 3, а, б, позволяет создавать ИВЭ с удельными показателями до 50 Вт/дм3, а в случае применения КСН по схеме рис. 3, в удельные характеристики ИВЭ достигают 90 Вт/дм3. Дальнейшее повышение удельных показателей этого класса ИВЭ может быть достигнуто при использовании методов комплексной миниатюризации.

Здесь были показаны только основные пути реализации ИВЭ, обусловленные требованиями со стороны РЭА, которая нуждается в экономически выгодных технических решениях преобразования и регулирования энергии. Учитывая, что проблема разработки ИВЭ усугубляется, как правило, малым временным интервалом, отводимым инженеру-разработчику на проектирование схемы, дальнейшее развитие направлений в области создания надежных и экономичных ИВЭ, обладающих высокими удельными показателями, не может быть успешным без использования современных методов расчета, анализа и оптимизации, ориентированных на ЭВМ.

Методы автоматизированного проектирования применяются при разработке радиоэлектронной аппаратуры (РЭА) для решения схемотехнических и конструкторско-технологических задач. Целью применения этих методов является повышение производительности труда и качества разрабатываемой аппаратуры.

Электронные схемы ИВЭ характеризуются наличием компонентов с нелинейными характеристиками. Аналитический расчет таких цепей представляет значительную трудность даже при использовании ЭВМ. Тем не менее, существуют методы приближенного расчета схем ИВЭ, позволяющие с достаточной для инженерной практики точностью определить основные параметры проектируемой схемы. Такие методики ориентированы, как правило, на определенный класс схем, например на конкретные типы выпрямителей, стабилизаторов, преобразователей и других устройств.

 

2. Пример алгоритма расчета выпрямителя с индуктивной нагрузкой

 

Задачей расчета выпрямительных устройств (ВУ) является определение требований к электрическим параметрам трансформаторов, дросселей, конденсаторов и выпрямительных диодов, входящих в схему ВУ.

Методика расчета ВУ должна учит