Использование магнитострикционного эффекта для измерения физических величин
Дипломная работа - Физика
Другие дипломы по предмету Физика
рмуле 7.
(7)
(8)
где - волновое число;
f0 - резонансная частота;
S0 - площадь суммарного поперечного сечения стержней.
Для одной и той же резонансной частоты возможны различные сочетания размеров S0, Su, dЯ, h0. Это типичная вариационная задача, когда перебором величин находится какой-то оптимальный критерий. В качестве такого критерия выбирается максимальная акустическая мощность Pa.
(9)
где Ра' - предельное значение удельной акустической мощности материала, которую можно приближенно оценить по формуле 10
(10)
где - приведенная добротность МСП;
Q - добротность, определяемая по частотной характеристике стержня изготовленного из данного материала;
W - удельное волновое сопротивление материала МСП;
?m - амплитуда магнитострикции определяется графически ниже;
А1 - конструктивная постоянная;
- конструктивная постоянная.
, (11)
где nc - количество стержней.
(12)
Конструктивная постоянная А2 связана с колебаниями ярма и определяется выражением
(13)
Для оптимизации размеров магнитопровода разработана специальная номограмма, которая приводится в НТД и в некоторых книгах. Нетрудно разработать соответствующую программу на ЭВМ. На практике эта задача решается редко, т.к. размеры пластин стандартизованы. Обычно конструктор проводит оценочный расчет для выбора ближайшей нормализованной пластины.
1.5.2 Оценка предельных параметров
При работе МСП в его сечениях действуют определенные механические напряжения. Наибольшие величины механических напряжений имеют место в узловом сечении сердечника (? = 0)
(14)
где ?0 - амплитуда смещений в тучности смещений при f = f0.
Если эти напряжения превысят предел усталости металла, то пакет разрушится или появятся микротрещины. Это ограничивает предельную акустическую мощность отдаваемую в нагрузку
(15)
где S - магнитострикция насыщения;
?S - предел усталости металла;
Sc - площадь сечения сердечника.
Из большого разнообразия магнитострикционных материалов наибольшее применение нашли перемендюры (сплав Fe с Co и V) К65, К49Ф2, никель Н1 и альфер Ю-14. Наибольшим коэффициентом магнитострикции обладает сплав К65 (?s=90*10-6) и К49Ф2 (?s=70*10-6). Пермендюры имеют достаточно высокую точку Кюри ~350С, что позволяет эксплуатировать их при повышенных температурах. К недостаткам перемендюров относят необходимость мощного подмагничивания, сравнительно низкую коррозионную стойкость, трудность создания изоляционного покрытия [5].
Никель по своим магнитострикционным свойствам уступает пермендюрам, но зато он обладает высокой коррозионной стойкостью. При отжиге пластин из Ni на воздухе, создается прочная окисная пленка. Важным достоинством Ni является его хорошая паяемость с серебром и сталями.
При использовании железо-аллюминиевых сплавов (альфер Ю14), несмотря на их неплохие магнитострикционные характеристики, серьезные затруднения вызывает их плохая паяемость со сталями.
Общие недостатки:
относительная дефицитность;
малое удельное электрическое сопротивление - невозможность работы на больших частотах;
очень критичны к механическим деформациям.
Достоинства:
увеличивают технологичность;
хорошо обрабатываются резанием и давлением.
2. Магнитострикционные преобразователи
Магнитострикция - изменение размеров и формы кристаллического тела при намагничивании - вызывается изменением энергетического состояния кристаллической решетки в магнитном поле, и, как следствие, расстояний между узлами решетки. Наибольших значений магнитострикция достигает в ферро- и ферритомагнетиках, в которых магнитное взаимодействие частиц особенно велико.
Обратное по отношению к магнитострикции явление - Виллари эффект - изменение намагничиваемости тела при его деформации. Виллари эффект обусловлен изменением под действием механических напряжений доменной структуры ферромагнетика, определяющей его намагниченность. В усилителях с очень большим коэффициентом усиления входной трансформатор на ферритах при определенных условиях вследствие магнитострикционного эффекта способен преобразовывать механические колебания в электрические [6].
Магнитострикция представляет собой деформирование тел при изменении их магнитного состояния. Данное явление, открытое в 1842 г. Джоулем, свойственно ферромагнитным металлам и сплавам (ферромагнетикам) и ферритам. Ферромагнетики обладают положительным межэлектронным обменным взаимодействием, приводящим к параллельной ориентации моментов атомных носителей магнетизма. Наличие постоянных магнитных моментов электронных оболочек характерно для кристаллов, состоящих из атомов, обладающих внутренними электронными оболочками. Способность вещества к намагничению характеризуется магнитной восприимчивостью, которая представляет собой отношение намагниченности к напряженности внешнего магнитного поля. Напряженность магнитного поля характеризуется силой, заключенной в единичной магнитной массе и действующей на северный магнитный полюс. Другой характеристикой магнитного поля является индукция магнитного поля. Магнитная энергия кристаллической решетки является функцией расстояния между атомами или ионами; следовательно, изменение магнитного состояния тела ведет к его деформированию, т. е. возникает явление магнитострикции. Магнитострикцио