Информационная концепция эволюции нашего мира
Информация - История
Другие материалы по предмету История
дирования и программирования, которые гарантировали сохранность тайн живой формы материи буквально до наших дней. И только в начале второй половины 20 века был открыт генетический код и сформулирована проблема действия генов как расшифровки закодированных в них сообщений. Однако среди биологов не оказалось квалифицированных криптографов, которые могли бы расшифровать остальные коды и различные линейные и пространственные кодовые комбинации элементов, используемые в структурах биологических макромолекул. Следовательно, важнейшим условием, обусловившим возникновение живой материи, явилось наличие совершенной и качественной молекулярной элементной базы. И только благодаря её замечательным свойствам, живая природа с большим успехом освоила удивительные химические методы кодирования информации и уникальные способы переноса и загрузки программной информации на молекулярные носители биологические молекулы. Этот факт подтверждается тем, что различные информационные коды в молекулярной системе записываются химическим способом и поэтому переносятся непосредственно в структурах биологических макромолекул. Более того, напомним, что все буквы и символы элементной базы (мономеры) живой материи оказалась наделёнными такими химическими и физическими природными качествами и свойствами, сочетание которых позволяет им в составе биологических молекул одновременно выполнять буквально различные по своей биологической роли функции и операции: 1) служить в качестве строительных блоков, с помощью которых осуществляется физическое построение различных макромолекул; 2) выполнять роль натуральных информационных единиц химических букв или символов, с помощью которых в биомолекулы записывается молекулярная информация; 3) служить в качестве элементарных единиц молекулярного кода, с помощью которого сначала идёт преобразование, а впоследствии, воплощение и реализация генетической информации; 4) быть программными элементам, с помощью которых строятся алгоритмы структурного преобразования, а затем и программа функционального поведения различных биологических макромолекул; 5) обуславливать потенциальную и свободную химическую энергию биомолекул. Всё это указывает на то, что информация, загруженная в макромолекулы (с помощью аппаратных средств и молекулярного алфавита), определяет не только их молекулярное содержание, но и их структуру, форму, класс биоорганического соединения, потенциальную и свободную энергию химических связей. Кроме того, та программная информация, которая загружена в молекулярные структуры, всегда определяет информационное и функциональное поведение биологических макромолекул. При этом, каждый типовой био-логический элемент (химическая буква или символ) характеризуется наличием своих функциональных атомных групп, которые определяют его химические свойства и служат входными и выходными цепями, с помощью которых элементы могут ковалентно соединяться друг с другом в длинные молекулярные цепи. И главное, важно отметить, что каждый элемент (мономер) имеет еще и свою индивидуальную боковую атомную группу (или группы), которая в живой системе, как правило, используется в качестве элементарного информационного химического сигнала! Наглядный пример: сообщение в цепи ДНК или РНК кодируется в виде последовательности нуклеотидов, а носителями генетической информации являются азотистые основания “боковые” атомные группы нуклеотидов. Соответственно, и в полипептидной цепи белка это сообщение записывается в виде последовательности аминокислот, где носителями информации являются их боковые R-группы. При этом различные химические буквы белкового алфавита (аминокислоты) в полипептидной цепи оказываются определённым образом сгруппированными в отдельные смысловые последовательности цепи, кодирующие различные инструкции, команды и сообщения, то есть всю программную информацию, необходимую для функционирования белковой молекулы. Как мы видим, гены могут управлять поведением биологических макромолекул только лишь при помощи программирования их структур и функций! [3]. Для дискретных сообщений характерно наличие фиксированного набора элементов, из которых формируются различные кодовые последовательности. К примеру, информационные сообщения могут кодироваться с помощью 33 букв алфавита русского языка или букв и символов других алфавитов. При этом различные буквы соответствующим образом группируются на бумаге (или на другом носителе) в слова, фразы и предложения. Общий алфавит живой формы материи также состоит из более 30 химических букв и символов молекулярного языка живой природы, с помощью которых кодируется биологическая информация. Причем, для “автоматизации” процессов записи и кодирования информации в живой клетке применяются специальные системы, такие как аппаратные устройства репликации, транскрипции и трансляции генетической информации. Химические буквы и символы (мономеры), как известно, построены на базе отдельных атомов и атомных групп. В связи с этим, в живых системах была достигнута невероятная плотность записи информации, так как её кодирование в структурах макромолекул осуществляется на субмолекулярном уровне с помощью боковых атомных групп молекулярных био-логических элементов. Можно себе представить, какое колоссальное количество информации хранится в генетической памяти и циркулирует в биологических молекулах и структурах единственной клетки, размеры которой в длину подчас составляют сотые доли миллиметра.