Интерпретатор

Информация - Компьютеры, программирование

Другие материалы по предмету Компьютеры, программирование

¤ункция error() будет рассмотрена позже. Переменная d появляется в программе там, где она действительно нужна, и сразу же инициализируется.

Функция prim, обрабатывающая первичное, во многом похожа на функции expr и erm().

 

double number_value;

char name_string[256];

 

double prim() // обрабатывает первичное

{

switch (curr_tok) {

case NUMBER: // константа с плавающей точкой

get_token();

return number_value;

case NAME:

if (get_token() == ASSIGN) {

name* n = insert(name_string);

get_token();

n->value = expr();

return n->value;

}

return look(name_string)->value;

case MINUS: // унарный минус

get_token();

return -prim();

case LP:

get_token();

double e = expr();

if (curr_tok != RP) return error("требуется )");

get_token();

return e;

case END:

return 1;

default:

return error("требуется первичное");

}

}

 

Когда появляется NUMBER (то есть константа с плавающей точкой), возвращается ее значение. Функция ввода get_token() помещает значение константы в глобальную переменную number_value. Если в программе используются глобальные переменные, то часто это указывает на то, что структура не до конца проработана, и поэтому требуется некоторая оптимизация. Именно так обстоит дело в данном случае. В идеале лексема должна состоять из двух частей: значения, определяющего вид лексемы

(в данной программе это token_value), и (если необходимо) собственно значения лексемы. Здесь же имеется только одна простая переменная curr_tok, поэтому для хранения последнего прочитанного значения NUMBER требуется глобальная переменная number_value. Такое решение проходит потому, что калькулятор во всех вычислениях вначале выбирает одно число, а затем считывает другое из входного потока.

Если последнее значение NUMBER хранится в глобальной переменной number_value, то строковое представление последнего значения NAME хранится в name_string. Перед тем, как что-либо делать с именем, интерпретатор должен заглянуть вперед, чтобы выяснить, будет ли ему присваиваться значение, или же будет только использоваться существующее его значение. В обоих случаях надо обратиться к таблице имен. Эта таблица состоит из записей, имеющих вид:

 

struct name {

char* string;

name* next;

double value;

};

 

Член next используется только служебными функциями, работающими с таблицей:

 

name* look(const char*);

name* insert(const char*);

 

Обе функции возвращают указатель на ту запись name, которая соответствует их параметру-строке. Функция look() "ругается", если имя не было занесено в таблицу. Это означает, что в калькуляторе можно использовать имя без предварительного описания, но в первый раз оно может появиться только в левой части присваивания.

 

3. Функция ввода

 

Получение входных данных - часто самая запутанная часть программы. Причина кроется в том, что программа должна взаимодействовать с пользователем, то есть "мириться" с его прихотями, учитывать принятые соглашения и предусматривать кажущиеся редкими ошибки.

Попытки заставить человека вести себя более удобным для машины образом, как правило, рассматриваются как неприемлемые, что справедливо.

Задача ввода для функции низкого уровня состоит в последовательном считывании символов и составлении из них лексемы, с которой работают уже функции более высокого уровня. В этом примере низкоуровневый ввод делает функция get_token().

Правила ввода для интерпретатора были специально выбраны несколько громоздкими для потоковых функций ввода. Незначительные изменения в определениях лексем превратили бы get_token() в обманчиво простую функцию.

Первая сложность состоит в том, что символ конца строки \n важен для калькулятора, но потоковые функции ввода воспринимают его как символ обобщенного пробела. Иначе говоря, для этих функций \n имеет значение только как символ, завершающий лексему.

Поэтому приходится анализировать все обобщенные пробелы (пробел, табуляция и т.п.). Это делается в операторе do :

 

char ch;

 

do { // пропускает пробелы за исключением \n

if(!cin.get(ch)) return curr_tok = END;

} while (ch!=\n && isspace(ch));

 

 

Функция cin.get(ch) читает один символ из стандартного входного потока в ch. Значение условия if(!cin.get(ch)) - ложь, если из потока cin нельзя получить ни одного символа. Тогда возвращается лексема END, чтобы закончить работу калькулятора. Операция ! (NOT) нужна потому, что в случае успешного считывания get() возвращает ненулевое значение.

Функция-подстановка isspace() из проверяет, не является ли ее параметр обобщенным пробелом. Она возвращает ненулевое значение, если является, и нуль в противном случае. Проверка реализуется как обращение к таблице, поэтому для скорости лучше вызывать isspace(), чем проверять самому. То же можно сказать о функциях isalpha(), isdigit() и isalnum(), которые используются в get_token().

После пропуска обобщенных пробелов следующий считанный символ определяет, какой будет начинающаяся с него лексема. Прежде, чем привести всю функцию, рассмотрим некоторые случаи отдельно. Лексемы \n и ;, завершающие выражение, обрабатываются следующим образом:

 

switch (ch) {

case ;:

case \n:

cin >> ws; // пропуск обобщенного пробела

return curr_tok=PRINT;

 

Необяз?/p>