Импульсный лабораторный источник питания
Дипломная работа - Компьютеры, программирование
Другие дипломы по предмету Компьютеры, программирование
й преобразователь
Последовательное включение конденсаторов с рабочей обмоткой импульсного трансформатора позволяет устранить несимметричный характер перемагничивания трансформатора Т1 в переходных режимах работы преобразователя. Последовательно с рабочей обмоткой полумостового преобразователя может быть включена обмотка дополнительного трансформатора ТЗ [1], выполняющего функиию контроля тока нагрузки в преобразователе.
На входы активных элементов преобразователя сигналы управления со вторичных обмоток согласующего трансформатора в схемах передаются через форсирующую резисторно-конденсаторную цепь. Параллельно переходному конденсатору, как правило, емкостью в 1,0 мкФ подключена цепь, состоящая из диода и резистора, эти элементы обеспечивают быстрый разряд конденсатора. Для облегчения режима пуска преобразователя в базовых цепях ключевых транзисторов включают резисторы, устанавливающие режим отсечки транзисторов преобразователя так, что отпирание транзистора происходит только по сигналу управления.
В состав практически всех приведенных схем входят диоды, включенные встречно по отношению к току, протекающему через транзисторы. Эти исключается нежелательное явление сквозных токов при переключениях.
3.1.2.4 ШИМ - контроллер
На вход ключевых транзисторов полумостового преобразователя поступают модулированные по длительности последовательности входных импульсов. Эти сигналы формируются ШИМ - контроллером, выполненном на интегральной микросхеме TL494 (TEXAS INSTRUMENTS). Микросхема содержит [1]:
-два усилителя ошибки;
-RC-генератор;
-компаратор паузы;
-тактируемый триггер;
-источник опорного напряжения +5 В;
-цепи управления выходным каскадом;
-выходной каскад.
Структурная схема микросхемы (рисунок 2.6) аналогична ИМС МВ3759 (FUJITSU), КА7500В (SAMSUNG), TL494 (MOTOROLA). Могут использоваться и другие микросхемы близкие по параметрам. Некоторые характерные отличия параметров микросхем различных производителей, составленные на основании соответствующих PDF-файлов [1], представлены в таблице 2.1.
Таблица 2.1 - Сравнение параметров микросхем TL494 и ее аналогов, выпускаемых различными производителями
МикросхемаTL494I(TI)TL494I(V) KA75QOBМВ3759Диапазон рабочих температур,С0 -40тАж+85-20тАж+850тАж+70-20тАж+85Типовое значение тока,мА25353540Рабочий диапазон частот ко-лебаний RC-генератора, кГц 1тАж3001тАж3001тАж3001тАж300Полоса пропускания усилителей ошибки, кГц 800350650800Коэффициент подавления синфазного сигнала усилителем ошибки, Дб 809080Ток коллекторов выходного каскада, мА 200200250250Значение тока потребления в дежурном режиме, мА9/407/406/157
Рисунок 2.6 - Структурная схема микросхемы TL494
Микросхема TL494 начинает функционировать [1] при подаче напряжения питания на вывод 12. Если рабочий диапазон питающих напряжений на этом выводе находится в пределах 7...40 В, то запускаются встроенный генератор и источник эталонного напряжения.
Генератор работает на фиксированной частоте, с этой же частотой на выводе 5 формируется пилообразное напряжение амплитудой 3,2 В. Частота следования пилы зависит от двух внешних компонентов: конденсатора Ст и резистора Rт; подключенным к выводам 5 и 6 соответственно. Приближенно частота генератора определяется по формуле fГ= 1,1/(RTCT).
Сигналы управления длительностью выходного импульса могут поступать на вход управления паузой (вывод 4), входы усилителей сигнала ошибки (1, 2, 15, 16) или вход обратной связи (3). Длительность выходного импульса ШИМ-компаратора устанавливается сравнением положительного нарастающего пилообразного напряжения с двумя другими управляющими сигналами, поступающими на неинвертирующие входы соответствующих компараторов.
Вывод 3 - вход обратной связи.
Вывод 4 - пауза. В некоторой литературе используются названия: время задержки, мертвая зона.
Выходной транзисторный каскад открывается, когда пилообразное напряжение на входах компараторов превышает сигналы управления, поэтому увеличение амплитуды управляющих сигналов вызывает соответствующее уменьшение длительности выходных импульсов микросхемы. Обратное соотношение сигналов исключает наличие импульсов на выходах микросхемы.
Дополнительной мерой исключения явления сквозного тока в полумостовом преобразователе является фиксированное смещение компаратора паузы 0,12 В. При напряжении пилы меньшем 0,12 В и нулевом потенциале на выводе 4, на выходе компаратора будет сохраняться нулевой уровень, этот интервал соответствует максимальной длительности выходного импульса и минимальной длительности интервала пауза, величина которой в этом случае не будет превосходить 4% от периода пилообразного напряжения. Максимальная длительность паузы соответствует напряжению равному +3,3 В на выводе 4 микросхемы.
Кроме того, с помощью входа управления паузой довольно просто организуется режим медленного пуска преобразователя. Наличие этого режима позволяет плавно запустить преобразователь в первый момент включения в электрическую сеть. Следует отметить, что режим запуска является очень тяжелым режимом работы преобразователя, все фильтровые конденсаторы разряжены, в связи с этим режим пуска близок к режиму короткого замыкания.
Транзисторы преобразователя до момента окончательного заряда конденсаторов фильтров выпрямителей должны работать в критическом режиме максимальных токов. Обеспечить комфортн?/p>